Природа электромагнитных волн | Леворадикал

Природа электромагнитных волн

Практически всё, что мы знаем о космосе (и микромире), известно нам благодаря электромагнитному излучению, то есть колебаниям электрического и магнитного полей, которые распространяются в вакууме со скоростью света. Собственно, свет — это и есть особый вид электромагнитных волн, воспринимаемый человеческим глазом.

spectrum2000

Интерактивный плакат

Интерактивный плакат

Точное описание электромагнитных волн и их распространения дают уравнения Максвелла. Однако качественно этот процесс можно объяснить без всякой математики. Возьмем покоящийся электрон — почти точечный отрицательный электрический заряд. Вокруг себя он создает электростатическое поле, которое влияет на другие заряды. На отрицательные заряды действует сила отталкивания, на положительные — сила притяжения, причем все эти силы направлены строго по радиусам, идущим от нашего электрона. С расстоянием влияние электрона на другие заряды ослабевает, но никогда не падает до нуля. Иначе говоря, во всем бесконечном пространстве вокруг себя электрон создает радиальное силовое поле (это верно лишь для электрона, который вечно покоится в одной точке).

Допустим, некая сила (не будем уточнять ее природу) неожиданно нарушила покой электрона и заставила его сдвинуться немного в сторону. Теперь силовые линии должны расходиться из нового центра, куда переместился электрон. Но электрическое поле, окружающее заряд, мгновенно перестроиться не может. На достаточно большом расстоянии силовые линии еще долго будут указывать на первоначальное местоположение заряда. Так будет до тех пор, пока не подойдет волна перестройки электрического поля, которая распространяется со скоростью света. Это и есть электромагнитная волна, а ее скорость есть фундаментальное свойство пространства в нашей Вселенной. Конечно, это описание крайне упрощено, а кое-что в нем даже просто неверно, но оно дает первое впечатление о том, как распространяются электромагнитные волны.

Неверно же в этом описании вот что. Описанный процесс на самом деле не является волной, то есть распространяющимся периодическим колебательным процессом. Распространение у нас есть, а вот колебаний нет. Но этот недостаток очень легко поправить. Заставим ту же силу, которая вывела электрон из первоначального положения, сразу же вернуть его на место. Тогда за первой перестройкой радиального электрического поля сразу последует вторая, восстанавливающая исходное положение дел. Пусть теперь электрон периодически повторяет это движение, и тогда по радиальным силовым линиям электрического поля во все стороны побегут настоящие волны. Эта картина уже много лучше первой. Впрочем, она тоже не вполне верна — волны получаются чисто электрическими, а не электромагнитными.

Тут самое время вспомнить о законе электромагнитной индукции: изменяющееся электрическое поле порождает магнитное, а изменяющееся магнитное — электрическое. Эти два поля как бы сцеплены друг с другом. Как только мы создаем волнообразное изменение электрического поля, так сразу же к нему добавляется и магнитная волна. Разделить эту пару волн невозможно — это единое электромагнитное явление.

Можно и дальше уточнять описание, постепенно избавляясь от неточностей и грубых приближений. Если довести это дело до конца, мы как раз и получим уже упомянутые уравнения Максвелла. Но давайте остановимся на полпути, потому что для нас пока важно лишь качественное понимание вопроса, а все основные моменты уже ясны из нашей модели. Главный из них — независимость распространения электромагнитной волны от ее источника.

В самом деле, волны электрического и магнитного полей, хотя и возникли благодаря колебаниям заряда, но вдали от него распространяются совершенно самостоятельно. Что бы ни случилось с зарядом-источником, сигнал об этом не догонит уходящую электромагнитную волну — ведь он будет распространяться не быстрее света. Это позволяет нам рассматривать электромагнитные волны как самостоятельные физические явления наряду с зарядами, которые их порождают.

Частота и длина волны

Электромагнитная волна характеризуется одним главным параметром — числом гребней, которые за секунду проходят мимо наблюдателя (или поступают в детектор). Эту величину называют частотой излучения ν. Поскольку для всех электромагнитных волн скорость в вакууме (с) одинакова, по частоте легко определить длину волны λ:

λ = с/ν.

Мы просто делим путь, пройденный светом за секунду, на число колебаний за то же время и получаем длину одного колебания. Длина волны — очень важный параметр, поскольку она определяет пограничный масштаб: на расстояниях заметно больше длины волны излучение подчиняется законам геометрической оптики, его можно описывать как распространение лучей. На меньших расстояниях совершенно необходимо учитывать волновую природу света, его способность обтекать препятствия, невозможность точно локализовать положение луча и т. п.

Из этих соображений, в частности, следует, что невозможно получить изображение объектов, если их размер порядка или меньше длины волны излучения, на которой ведется наблюдение. Это, в частности, ставит предел возможностям микроскопов. В видимом свете невозможно рассмотреть объекты размером менее полмикрона; соответственно, увеличение больше чем 1-2 тысячи раз для оптического микроскопа лишено смысла.

История открытия электромагнитных волн

Открытие электромагнитных волн — замечательный пример взаимодействия эксперимента и теории. На нем видно, как физика объединила, казалось бы, абсолютно разнородные свойства — электричество и магнетизм, — обнаружив в них различные стороны одного и того же физического явления — электромагнитного взаимодействия. На сегодня это одно из четырех известных фундаментальных физических взаимодействий, к числу которых также относятся сильное и слабое ядерные взаимодействия и гравитация. Уже построена теория электрослабого взаимодействия, которая с единых позиций описывает электромагнитные и слабые ядерные силы. Имеется и следующая объединяющая теория — квантовая хромодинамика — которая охватывает электрослабое и сильное взаимодействия, но ее точность несколько ниже. Описать все фундаментальные взаимодействия с единых позиций пока не удается, хотя в этом направлении ведутся интенсивные исследования в рамках таких направлений физики, как теория струн и квантовая гравитация.

Электромагнитные волны были предсказаны теоретически великим английским физиком Джеймсом Кларком Максвеллом (вероятно, впервые в 1862 году в работе «О физических силовых линиях», хотя подробное описание теории вышло в 1867 году). Он прилежно и с огромным уважением пытался перевести на строгий математический язык немного наивные картинки Майкла Фарадея, описывающие электрические и магнитные явления, а также результаты других ученых. Упорядочив одинаковым образом все электрические и магнитные явления, Максвелл обнаружил ряд противоречий и отсутствие симметрии. Согласно закону Фарадея переменные магнитные поля порождают электрические поля. Но не было известно, порождают ли переменные электрические поля — магнитные. Избавиться от противоречия и восстановить симметрию электрического и магнитного полей Максвеллу удалось, введя в уравнения дополнительный член, который описывал возникновение магнитного поля при изменении электрического. К тому времени благодаря опытам Эрстеда уже было известно, что постоянный ток создает вокруг проводника постоянное магнитное поле. Новый член описывал другой источник магнитного поля, но его можно было представить как некий воображаемый электрический ток, который Максвелл назвал током смещения, чтобы отличить от обычного тока в проводниках и электролитах — тока проводимости. В итоге получилось, что переменные магнитные поля порождают электрические поля, а переменные электрические — магнитные. И тогда Максвелл понял, что в такой связке колеблющиеся электрическое и магнитное поля могут отрываться от порождающих их проводников и двигаться через вакуум с определенной, но очень большой скоростью. Он вычислил эту скорость, и она оказалась около трехсот тысяч километров в секунду.

Потрясенный полученным результатом, Максвелл пишет Уильяму Томсону (лорду Кельвину, который, в частности, ввел абсолютную шкалу температур): «Скорость поперечных волновых колебаний в нашей гипотетической среде, вычисленная из электромагнитных опытов Кольрауша и Вебера, столь точно совпадает со скоростью света, вычисленной из оптических опытов Физо, что мы едва ли может отказаться от вывода, что свет состоит из поперечных колебаний той же самой среды, которая является причиной электрических и магнитных явлений». И далее в письме: «Я получил свои уравнения, живя в провинции и не подозревая о близости найденной мной скорости распространения магнитных эффектов к скорости света, поэтому я думаю, что у меня есть все основания считать магнитную и светоносную среды как одну и ту же среду…»

Уравнения Максвелла далеко выходят за рамки школьного курса физики, но они так красивы и лаконичны, что их стоит разместить на видном месте в кабинете физики, ведь большинство значимых для человека явлений природы удается описать с помощью всего нескольких строчек этих уравнений. Так сжимается информация, когда объединяются ранее разнородные факты. Вот один из видов уравнений Максвелла в дифференциальном представлении. Полюбуйтесь.

E = 4πρЗакон Кулона
B = 0&магнитные заряды не существуют в природе
[∇E] = –1/cBtзакон Фарадея
[∇B] = (4π/c)j + (1/c)(δEt)Закон Ампера, с током смещения Максвелла (второй член правой части)
F = q(E+ [(v/c)×B])Сила Лоренца

Хочется подчеркнуть, что из расчетов Максвелла получалось обескураживающее следствие: колебания электрического и магнитного полей — поперечные (что он сам все время подчеркивал). А поперечные колебания распространяются только в твердых телах, но не в жидкостях и газах. К тому времени было надежно измерено, что скорость поперечных колебаний в твердых телах (попросту скорость звука) тем выше, чем, грубо говоря, тверже среда (чем больше модуль Юнга и меньше плотность) и может достигать нескольких километров в секунду. Скорость поперечной электромагнитной волны была почти в сто тысяч раз выше, чем скорость звука в твердых телах. А надо заметить, что характеристика жесткости входит в уравнение скорости звука в твердом теле под корнем. Получалось, что среда, через которую идут электромагнитные волны (и свет), имеет чудовищные характеристики упругости. Возник крайне тяжелый вопрос: «Как же через такую твердую среду движутся другие тела и не чувствуют ее?» Гипотетическую среду назвали — эфиром, приписав ему одновременно странные и, вообще говоря, взаимоисключающие свойства — огромную упругость и необычайную легкость.

Работы Максвелла вызвали шок среди ученых-современников. Сам Фарадей с удивлением писал: «Сначала я даже испугался, когда увидел такую математическую силу, примененную к вопросу, но потом удивился, видя, что вопрос выдерживает это столь хорошо». Несмотря на то, что взгляды Максвелла опрокидывали все известные на то время представления о распространении поперечных волн и о волнах вообще, прозорливые ученые понимали, что совпадение скорости света и электромагнитных волн — фундаментальный результат, который говорит, что именно здесь физику ожидает основной прорыв.

К сожалению, Максвелл умер рано и не дожил до надежного экспериментального подтверждения своих расчетов. Международное научное мнение изменилось в результате опытов Генриха Герца, который через 20 лет (1886–89) в серии экспериментов продемонстрировал генерацию и прием электромагнитных волн. Герц не только в тиши лаборатории получил правильный результат, но страстно и бескомпромиссно защищал взгляды Максвелла. Причем он не ограничился экспериментальным доказательством существование электромагнитных волн, но и исследовал их основные свойства (отражение от зеркал, преломление в призмах, дифракцию, интерференцию и т. д.), показав полную тождественность электромагнитных волн со светом.

Любопытно, что за семь лет до Герца, в 1879 году английский физик Дэвид Эдвард Юз (Хьюз — D. E. Hughes) тоже продемонстрировал перед другими крупными учеными (среди них был также блестящий физик и математик Георг-Габриель Стокс) эффект распространения электромагнитных волн в воздухе. В результате обсуждений ученые пришли к выводу, что видят явление электромагнитной индукции Фарадея. Юз расстроился, не поверил самому себе и опубликовал результаты лишь в 1899 году, когда теория Максвелла-Герца стала общепринятой. Этот пример говорит, что в науке настойчивое распространение и пропаганда полученных результатов имеет часто не меньшее значение, чем сам научный результат.

Генрих Герц так подытожил результаты своих экспериментов: «Описанные эксперименты, как, по крайне мере, кажется мне, устраняют сомнения в тождественности света, теплового излучения и электродинамического волнового движения».

Великое объединение

В словах Генриха Герца чувствуется торжественные, хоть и сдержанные нотки человека, который причастен еще к одному великому объединению. Он объединяет в единую сущность не только свет и электромагнитные волны, но и тепловое (сейчас бы мы сказали инфракрасное) излучение, которое после смерти Максвелла было хорошо изучено, и была доказана его волновая природа.

В конце ХIХ века были открыты рентгеновские лучи (с огромным общественным резонансом) и гамма-лучи (абсолютно незамеченные широкой общественностью). Оказалось, что и они имеют электромагнитную волновую природу — отражаются, преломляются, испытывают дифракцию и интерференцию, как и другие типы электромагнитных волн. Только их длина волны гораздо короче световой, и они особым образом взаимодействуют с веществом.

Ультрафиолетовое излучение было открыто независимо в 1801 году немецким ученым Иоганном Вильгельмом Риттером и английским Уильямом Хайдом Волластоном по фотохимическому действию ультрафиолета на хлористое серебро. Вакуумный ультрафиолет обнаружил немецкий ученый Виктор Шуман при помощи построенного им вакуумного спектрографа с флюоритовой призмой (1885–1903) и безжелатиновых фотопластинок. Американский ученый Теодор Лайман впервые построил вакуумный спектрограф с вогнутой дифракционной решеткой. Он смог зарегистрировать ультрафиолет с длиной волны до 25 нм (1924).

Гульермо Маркони, Никола Тесла и Александр Степанович Попов (в ряду других ученых) научились передавать информацию «без проводов» с помощью электромагнитных волн длинноволновой части спектра — радиодиапазона. Маркони потряс мировое сообщество, передав в 1901 году электромагнитный сигнал через океан (во что не без оснований не верили многие ученые, т. к. радиоволны этой длины волны не могли обогнуть Землю), случайно открыв таким образом огромное естественное зеркало — ионосферу, от которой волны Маркони отразились (Нобелевская премия 1909 года). Через десять лет радиоприемники стали привычным бытовым прибором. Голос человека и музыка залили мировой эфир, сделав передачу информации практически мгновенной и удивительно дешевой (физический термин «эфир» стал расхожим словом и термином радио и телевещания: «слушаем вас, Александр Генрихович, вы в эфире»).

Таким образом оказалось, что огромное многообразие природных явлений можно свести к единому явлению — электромагнитным волнам. В дальнейшем очень точные измерения показали, что все типы электромагнитных волн движутся в вакууме с одной и той же скоростью, близкой к 300 тыс. км/с. Причем был получен еще один удивительный результат — скорость электромагнитных волн в вакууме постоянна во всех системах отчета и превысить ее (по современным представлениям) невозможно ни в каком физическом процессе. Более точные измерения дали значение с = 299 792 458 м/с с точностью до одного метра в секунду. Но потом выяснилось, что точность измерения скорости света превышает точность эталона длины — метра. И тогда было решено считать приведенное выше значение скорости света точным по определению, а метр определять как путь, проходимый светом в вакууме за 1/299 792 458 долю секунды. Постоянство скорости света как фундаментальное свойство Вселенной легло в основу специальной теории относительности (1905) Альберта Эйнштейна, которая открыла череду научных революций ХХ века.

Единственной отличительной характеристикой всех типов электромагнитных волн от радиодиапазона до гамма-лучей стала длина волны (или частота). То, что разные участки электромагнитного спектра называются по-разному (свет, рентгеновские-, гамма-лучи и т. д.) напоминает нам о том, что эти излучения вначале считались явлениями разной природы и потребовались усилия десятков выдающихся ученых, чтобы объединить эти явления в единую сущность.

Оказалось также, что электромагнитная волна — единственная в то время известная физическая волна, которой не нужна среда для распространения. Этим объяснялись непостижимые свойства эфира. Эфира, как среды, через которую распространяются электромагнитные волны, просто нет. Он не нужен. Переменные электрические и магнитные поля, по классическим представлениям, порождая друг друга, несутся с огромной скоростью через пустое пространство.

Уравнения Максвелла описывают классическое поведение зарядов и электромагнитных волн. Со временем уравнения переписали в четырехмерном виде, согласованном со специальной теорией относительности. Но наиболее развитой по современным представлениям теорией, которая лучше всего на данный момент описывает элементарное взаимодействие фотонов и электронов, является квантовая электродинамика. Это и есть на сегодня самая точная теория электромагнитных волн. В ней основными параметрами поля являются импульсы и поляризации фотонов. Теория позволяет рассчитать амплитуды вероятностей процессов, которые произойдут при взаимодействии с фотонами и заряженными частицами. Классическая электродинамика Максвелла — частный случай квантовой электродинамики и выводится из нее.

Квантовая электродинамика прекрасно согласуется с экспериментом. За ее создание присуждена Нобелевская премия 1965 года Синьитиро Томонага, Джулиусу Швингеру, Ричарду Фейнману. Но многие ученые считают ее полуэмпирической: «наша уверенность в правильности получающихся таким путем результатов основана, в конечном счете, на их прекрасном согласии с опытом, а не на внутренней согласованности и логической стройности основных принципов теории» (Ричард Фейнман). Со времен Максвелла физики значительно продвинулись в понимании и описании электромагнитного взаимодействия, но и сейчас законченной теории электромагнитных взаимодействий не создано. И у тех ребят, кто сидит сегодня за партой и интересуется физикой, есть шанс построить логически стройную теорию электромагнитного излучения.

Энергия кванта

У всех классических механических волн (в жидкостях, газах и твердых телах) главный параметр, определяющий энергию волны, — это ее амплитуда (точнее, квадрат амплитуды). В случае света амплитуда определяет интенсивность излучения. Однако при изучении явления фотоэффекта — выбивания светом электронов из металла — обнаружилось, что энергия выбитых электронов не связана с интенсивностью (амплитудой) излучения, а зависит только от его частоты. Даже слабый голубой свет выбивает электроны из металла, а самый мощный желтый прожектор не может выбить из того же металла ни одного электрона. Интенсивность определяет, сколько будет выбито электронов, — но только если частота превышает некоторый порог. Оказалось, что энергия в электромагнитной волне раздроблена на порции, получившие название квантов. Энергия кванта электромагнитного излучения фиксирована и равна

E = hν,

где h = 4·10–15 эВ·с = 6·10–34 Дж·с — постоянная Планка, еще одна фундаментальная физическая величина, определяющая свойства нашего мира. С отдельным электроном при фотоэффекте взаимодействует отдельный квант, и если его энергии недостаточно, он не может выбить электрон из металла. Давний спор о природе света — волны это или поток частиц — разрешился в пользу своеобразного синтеза. Одни явления описываются волновыми уравнениями, а другие — представлениями о фотонах, квантах электромагнитного излучения, которые были введены в оборот двумя немецкими физиками — Максом Планком и Альбертом Эйнштейном.

Энергию квантов в физике принято выражать в электрон-вольтах. Это внесистемная единица измерения энергии. Один электрон-вольт (1 эВ) равен энергии, которую приобретает электрон, когда разгоняется электрическим полем напряжением 1 вольт. Это очень небольшая величина, в единицах системы Си 1 эВ = 1,6·10–19 Дж. Но в масштабах атомов и молекул электрон-вольт — вполне солидная величина.

От энергии квантов напрямую зависит способность излучения производить определенное воздействие на вещество. Многие процессы в веществе характеризуются пороговой энергией — если отдельные кванты несут меньшую энергию, то, как бы много их ни было, они не смогут спровоцировать надпороговый процесс.

Немного забегая вперед, приведем примеры. Энергии СВЧ-квантов хватает для возбуждения вращательных уровней основного электронно-колебательного состояния некоторых молекул, например воды. Энергии в доли электрон-вольта хватает для возбуждения колебательных уровней основного состояния в атомах и молекулах. Этим определяется, например, поглощение инфракрасного излучения в атмосфере. Кванты видимого света имеют энергию 2–3 эВ — этого достаточно для нарушения химических связей и провоцирования некоторых химических реакций, например, тех, что протекают в фотопленке и в сетчатке глаза. Ультрафиолетовые кванты могут разрушать более сильные химические связи, а также ионизировать атомы, отрывая внешние электроны. Это делает ультрафиолет опасным для жизни. Рентгеновское излучение может вырывать из атомов электроны с внутренних оболочек, а также возбуждать колебания внутри атомных ядер. Гамма-излучение способно разрушать атомные ядра, а самые энергичные гамма-кванты даже внедряются в структуру элементарных частиц, таких как протоны и нейтроны.

Температура излучения

Наконец, есть еще один способ охарактеризовать электромагнитное излучение — указав его температуру. Строго говоря, этот способ годится только для так называемого чернотельного или теплового излучения. Абсолютно черным телом в физике называют объект, поглощающий всё падающее на него излучение. Однако идеальные поглощающие свойства не мешают телу самому испускать излучение. Наоборот, для такого идеализированного тела можно точно рассчитать вид спектра излучения. Это так называемая кривая Планка, форма которой определяется единственным параметром — температурой. Знаменитый горб этой кривой показывает, что нагретое тело мало излучает как на очень длинных, так и на очень коротких волнах. Максимум излучения приходится на вполне определенную длину волны, значение которой прямо пропорционально температуре.

Указывая эту температуру, нужно иметь в виду, что это не свойство самого излучения, а лишь температура идеализированного абсолютно черного тела, которое на данной волне имеет максимум излучения. Если есть основание считать, что излучение испущено нагретым телом, то, найдя максимум в его спектре, можно приближенно определить температуру источника. Например, температура поверхности Солнца составляет 6 тысяч градусов. Это как раз соответствует середине видимого диапазона излучения. Вряд ли это случайно — скорее всего, глаз за время эволюции приспособился максимально эффективно использовать солнечный свет.

Неоднозначность температуры

Точка спектра, на которую приходится максимум чернотельного излучения, зависит от того, на какой оси мы строим график. Если по оси абсцисс равномерно откладывать длину волны в метрах, то максимум будет приходиться на

λmax = b/T = (2,9·10–3 м·К)/T,

где b = 2,9·10–3 м·К. Это так называемый закон смещения Вина. Если построить тот же спектр, равномерно отложив на оси ординат частоту излучения, местоположение максимума вычисляется по формуле:

νmax = (αk/h) · T = (5,9·1010 Гц/К) · Т,

где α = 2,8, k = 1.4·10–23 Дж/К — постоянная Больцмана, h — постоянная Планка.

Все было бы хорошо, но, как выясняется λmax и νmax ·соответствуют разным точкам спектра. Это становится очевидно, если вычислить длину волны, соответствующую νmax, то получится:

λ’max = сmax = (сhk)/T = (5,1·10–3 м·К)/Т.

Таким образом, максимум спектра, определенный по частоте, в λ’maxmax = 1,8 раза отличается по длине волны (а значит и по частоте) от максимума того же спектра, определенного по длинам волн. Иными словами, частота и длина волны максимума чернотельного излучения не соответствуют друг другу: λmax ≠ сmax.

В видимом диапазоне принято указывать максимум спектра теплового излучения по длине волны. В спектре Солнца, как уже говорились, он приходится на видимый диапазон. Однако по частоте максимум солнечного излучения лежит в ближнем инфракрасном диапазоне.

А вот максимум космического микроволнового излучения с температурой 2,7 К принято указывать по частоте — 160 МГц, что соответствует длине волны 1,9 мм. Между тем, в графике по длинам волн максимум реликтового излучения приходится на 1,1 мм.

Всё это показывает, что температуру надо с большой осторожностью использовать для описания электромагнитного излучения. Ее можно применять только в случае излучения, близкого по спектру к тепловому, либо для очень грубой (с точностью до порядка) характеристики диапазона. Например, видимому излучению соответствует температура в тысячи градусов, рентгену — миллионы, микроволновому — около 1 кельвина.

Диапазоны излучения и вещество

Хотя в вакууме электромагнитные волны всех частот распространяются одинаково — со скоростью света, их взаимодействие с веществом очень сильно зависит от частоты (а равным образом от длины волны и энергии кванта). По характеру взаимодействия с веществом излучение делят на диапазоны: гамма-излучение, рентген, ультрафиолет, видимый свет, инфракрасное излучение и радиоволны, которые вместе образуют электромагнитный спектр. Сами эти диапазоны в свою очередь разделяют на поддиапазоны, причем в науке нет единой устоявшейся традиции такого деления. Тут многое зависит от применяемых технических средств для генерации и регистрации излучения. Поэтому в каждой сфере науки и техники поддиапазоны определяют по-своему, а нередко даже сдвигают границы основных диапазонов.

Видимое излучение

Из всего спектра человеческий глаз способен улавливать излучение только в очень узком диапазоне видимого света. От одного его края до другого частота излучения (а равно длина волны и энергия квантов) меняется менее чем в два раза. Для сравнения самые длинные радиоволны в 1014 раз длиннее видимого излучения, а самые энергичные гамма-кванты — в 1020 энергичнее. Тем не менее, на протяжении многих тысяч лет большую часть информации об окружающем мире люди черпали из диапазона видимого излучения, границы которого определяются свойствами светочувствительных клеток человеческой сетчатки.

Разные длины волн видимого света воспринимаются человеком как разные цвета — от красного до фиолетового. Традиционное деление видимого диапазона спектра на семь цветов радуги является культурной условностью. Никаких четких физических границ между цветами нет. Англичане, например, обычно делят радугу на шесть цветов. Известны и другие варианты. За восприятие всего разнообразия цветов и оттенков видимого света отвечают всего три различных типа рецепторов, которые чувствительны к красному, зеленому и синему цвету. Это позволяет воспроизводить практически любой цвет, смешивая на экране эти три основных цвета.

Для приема видимого света от далеких космических источников используют вогнутые зеркала, которые собирают излучение с большой площади практически в одну точку. Чем крупнее зеркала, тем мощнее телескоп. Зеркала должны изготавливаться с чрезвычайно высокой точностью — отклонения формы поверхности от идеальной не должны превышать десятой доли длины волны — 40 нанометров, то есть 0,04 микрона. И такая точность должна сохраняться при любых поворотах зеркала. Это определяет высокую стоимость больших телескопов. Диаметр зеркал самых крупных оптических инструментов — телескопов Кека на Гавайях — 10 метров.

Хотя атмосфера прозрачна для видимого света (отмечено голубыми стрелками на плакате), она всё же создает серьезные помехи для наблюдений. Даже если забыть про облака, атмосфера немного искривляет лучи света, что снижает четкость изображения. Кроме того, сам воздух рассеивает падающий свет. Днем это голубое свечение, вызванное рассеянным светом Солнца, не позволяет вести астрономические наблюдения, а ночью — рассеянный свет звезд (и в последние десятилетия искусственная засветка неба наружным освещением городов, автомобилями и т. п.) ограничивает видимость самых бледных объектов. Справиться с этими трудностями позволяет вынос телескопов в космос. Телескоп «Хаббл» по земным меркам имеет очень скромные размеры — диаметр 2,24 метра, однако благодаря заатмосферному размещению он позволил сделать множество первоклассных астрономических открытий.

Ультрафиолетовое излучение

С коротковолновой стороны от видимого света располагается ультрафиолетовый диапазон, который делят на ближний и вакуумный. Как и видимый свет, ближний ультрафиолет проходит через атмосферу. Органами чувств человек его не воспринимает, но на коже ближний ультрафиолет вызывает появление загара. Это защитная реакция кожи на определенные химические нарушения под действием ультрафиолета. Чем короче длина волны, тем большие нарушения может вызывать ультрафиолетовое излучение в биологических молекулах. Если бы весь ультрафиолет проходил через атмосферу, жизнь на поверхности Земли была бы невозможна. Однако выше некоторой частоты атмосфера перестает пропускать ультрафиолетовое излучение, поскольку энергии его квантов становится достаточно для разрушения (диссоциации) молекул воздуха. Одним из первых ультрафиолетовый удар принимает на себя озон, за ним следует кислород. Вместе атмосферные газы предохраняют поверхность Земли от жесткого ультрафиолетового излучения Солнца, которое называют вакуумным, поскольку оно может распространяться только в пустоте (вакууме). Верхний предел вакуумного ультрафиолета — 200 нм. С этой длины волны начинает поглощать ультрафиолет молекулярный кислород (O2).

Телескопы для ближнего ультрафиолетового излучения строятся по тем же принципам, что и для видимого диапазона. В них тоже используются зеркала, покрытые тонким отражающим металлическим слоем, но изготавливать их надо с еще большей точностью. Ближний ультрафиолет можно наблюдать с Земли, вакуумный — только из космоса.

Рентгеновское излучение

Формальной границы между жестким ультрафиолетовым и рентгеновским излучением нет. К ее определению есть два основных подхода: с одной стороны, к рентгену принято относить излучение, способное вызывать возбуждение атомных ядер — подобно тому, как видимое и инфракрасное излучение возбуждает электронные оболочки атомов и молекул. В этом случае даже жесткий вакуумный ультрафиолет в некоторых случаях может быть отнесен к рентгену. В другом подходе рентгеном считают излучение с длиной волны меньше характерного размера атомов (0,1 нм). Тогда получается, что большую часть мягкого рентгеновского диапазона следует считать сверхжестким ультрафиолетом.

Мягкое рентгеновское излучение еще может отражаться от полированного металла, но только при скользящем падении — под углом менее 1 градуса. Более жесткое излучение приходится концентрировать иными способами. Для задания направления используют узкие трубки, отсекающие кванты, приходящие сбоку, а приемником служит сцинтиллятор, в котором рентгеновские кванты ионизируют атомы, а те, вновь объединяясь с электронами, испускают видимое или ультрафиолетовое излучение, которое регистрируют при помощи фотоэлектронных умножителей. По сути, в телескопах жесткого рентгеновского диапазона ведется подсчет отдельных квантов излучения и уже потом при помощи компьютера формируется изображение.

От рентгена к гамма

Граница, на которой рентгеновский диапазон сменяется гамма-излучением, также условна. Обычно ее связывают с энергией квантов, которые испускаются при ядерных реакциях (или наоборот, могут их вызывать). Другой подход связан с тем, что тепловое излучение не принято относить к гамма-диапазону, как бы ни была высока его энергия. Во Вселенной наблюдаются относительно стабильные макроскопические объекты, разогретые до десятков миллионов градусов — это центральные участки аккреционных дисков вокруг нейтронных звезд и черных дыр. А вот объекты с температурой в миллиарды градусов — например, ядра массивных красных гигантов — практически всегда укрыты непрозрачной оболочкой. Впрочем, нередко даже излучение в их недрах называют не мягким гамма-излучением, а сверхжестким рентгеном. Устойчивых образований с температурой выше десятков миллиардов градусов в современной Вселенной неизвестно. Это дает основание считать, что гамма-излучение всегда генерируется нетепловым путем. Основным механизмом является излучение при столкновении заряженных частиц, разогнанных до околосветовых скоростей мощными электромагнитными полями, например, у нейтронных звезд.

Гамма-излучение

Деление гамма-излучения на поддиапазоны носит еще более условный характер. К сверхвысоким энергиям относят гамма-кванты, генерация которых выходит за пределы возможностей современных технологий. Все источники такого излучения связаны исключительно с космосом. Но поскольку технологиям свойственно развиваться, это определение нельзя назвать четким.

Атмосфера защищает нас и от гамма-излучения. В мягком и жестком поддиапазонах она полностью его поглощает. Кванты диапазона сверхвысоких энергий, сталкиваясь с ядрами атомов в атмосфере, порождают каскады частиц, энергия которых постепенно снижается и рассеивается. Однако первые эшелоны частиц в них движутся быстрее скорости света в воздухе. В таких условиях заряженные частицы порождают так называемое тормозное (черенковское) излучение, в чем-то подобное звуковой ударной волне от сверхзвукового самолета. Ультрафиолетовые и видимые кванты тормозного излучения достигают поверхности Земли, где улавливаются специальными телескопами. Можно сказать, что сама атмосфера становится частью телескопа, и это позволяет наблюдать с Земли гамма-излучение сверхвысоких энергий. Это отмечено на плакате красными стрелками.

Еще более энергичные кванты — ультравысоких энергий — порождают настолько мощные каскады частиц, что они пробивают атмосферу насквозь и достигают поверхности Земли. Их называют широкими атмосферными ливнями (ШАЛ) и регистрируют сцинтилляционными датчиками. Частицы ШАЛ наряду с естественной радиоактивностью земных пород могут повреждать биологические молекулы, в частности ДНК, и вызывать мутации в живых организмах. Тем самым они вносят свой вклад в эволюцию жизни на Земле. Но если бы их интенсивность была заметно выше, это могло бы стать серьезным препятствием для жизни. К счастью, чем выше энергия гамма-квантов, тем реже они встречаются. Самые энергичные кванты с энергией около 1020 эВ приходят примерно раз в сто лет на квадратный километр земной поверхности. Происхождение столь энергичных гамма-квантов пока не вполне ясно. Значительно большей энергией кванты обладать не могут, так как выше некоторого порога они начинают взаимодействовать с реликтовым микроволновым излучением, приводя к рождению заряженных частиц. Иначе говоря, Вселенная непрозрачна для излучения заметно более энергичного, чем 1021–1024 эВ.

Инфракрасное излучение

Отправляясь от видимого света в длинноволновую сторону спектра, мы попадаем в диапазон инфракрасного излучения. Ближнее ИК-излучение физически ничем не отличается от видимого света, за исключением того, что не воспринимается сетчаткой глаза. Его можно регистрировать теми же приборами, в частности, телескопами, что и видимый свет. Человек также ощущает инфракрасное излучение кожей — как тепло. Именно благодаря инфракрасному излучению нам тепло сидеть у костра. Большую часть энергии горения уносит вверх восходящий поток воздуха, на котором мы кипятим воду в котелке, а инфракрасное (и видимое) излучение испускается в стороны молекулами газов, продуктов сгорания и раскаленными частицами угля.

С ростом длины волны атмосфера теряет прозрачность для инфракрасного излучения. Это связано с так называемыми колебательно-вращательными полосами поглощения молекул атмосферных газов. Будучи квантовыми объектами, молекулы не могут вращаться или колебаться произвольным образом, как грузы на пружинке. У каждой молекулы есть свой набор энергий (и, соответственно, частот излучения), которые они могут запасать в форме колебательных и вращательных движений. Однако даже у не самых сложных молекул воздуха набор этих частот столь обширен, что фактически атмосфера поглощает всё излучение в некоторых участках инфракрасного спектра — это так называемые инфракрасные полосы поглощения. Они перемежаются небольшими участками, в которых космическое ИК-излучение достигает поверхности Земли — это так называемые окна прозрачности, которых насчитывается около десятка. Их существование представлено на плакате разрозненными голубыми стрелками в инфракрасном диапазоне. Интересно отметить, что поглощение ИК-излучения почти полностью происходит в нижних слоях атмосферы из-за повышения плотности воздуха у поверхности Земли. Это позволяет вести наблюдения почти во всем инфракрасном диапазоне с аэростатов и высотных самолетов, которые поднимаются в стратосферу.

Деление инфракрасного излучения на поддиапазоны также весьма условно. Граница между ближним и средним инфракрасным излучением проводится примерно в районе абсолютной температуры 300 К, которая характерна для предметов на земной поверхности. Поэтому все они, включая приборы, являются мощными источниками инфракрасного излучения. Чтобы в таких условиях выделить излучение космического источника, аппаратуру приходится охлаждать до температур, близких к абсолютному нулю, и выносить за пределы атмосферы, которая сама интенсивно светит в среднем ИК-диапазоне — именно за счет этого излучения Земля рассеивает в космос энергию, постоянно поступающую от Солнца. Основной тип приемника излучения в этом диапазоне — болометр, то есть, попросту говоря, маленькое черное тело, поглощающее излучение, соединенное со сверхточным термометром.

Дальний инфракрасный диапазон — один из наиболее сложных, как для генерации, так и для регистрации излучения. В последнее время благодаря разработке особых материалов и сверхбыстродействующей электроники с ним научились достаточно эффективно работать. В технике его часто называют терагерцевым излучением. Сейчас активно идет разработка бесконтактных сканеров для определения химического состава объектов на основе генераторов терагерцевого излучения. Они смогут выявлять пластиковую взрывчатку и наркотики на контрольных пунктах в аэропортах.

В астрономии этот диапазон чаще называют субмиллиметровым излучением. Он интересен тем, что в нем (а также в соседнем с ним микроволновом диапазоне) наблюдается реликтовое излучение Вселенной. До уровня моря субмиллиметровое излучение не доходит, но поглощается оно в основном в самых нижних слоях атмосферы. Поэтому в горах Чили и Мексики на высоте около 5 тысяч метров над уровнем моря сейчас строятся крупные субмиллиметровые телескопы — в Мексике 50-метровый, а в Чили массив из 64 телескопов диаметром 12 метров.

Подпишитесь на нас в telegram

Микроволны и радиоволны

К инфракрасному диапазону примыкает радиоизлучение, которое охватывает весь длинноволновый край электромагнитного спектра. Энергия квантов в радиодиапазоне очень мала. Ее обычно не хватает для существенных изменений в структуре атомов и молекул, но хватает, чтобы взаимодействовать с вращательными уровнями молекул, например, воды. Энергии радиоволн также достаточно для того, чтобы воздействовать на свободные электроны, например, в проводниках. Колебания электромагнитного поля радиоволны вызывают синхронные колебания электронов в антенне, то есть переменный электрический ток.

При высокой интенсивности микроволнового излучения этот ток может вызывать значительный нагрев вещества. Это свойство используется для разогрева продуктов, содержащих воду, в микроволновых печах. Микроволновое излучение также называют сверхвысокочастотным (СВЧ) излучением. Оно является самым коротковолновым поддиапазоном радиоизлучения с длиной волны от 1 мм до 30 см. СВЧ-излучение проникает в толщу продуктов на глубину до нескольких сантиметров, что обеспечивает прогрев по всему объему, а не только с поверхности, как в случае обработки инфракрасным излучением на гриле. В микроволновом диапазоне также работают все системы сотовых телефонов и локальной радиосвязи, например, протоколы Bluetooth и WiFi, используемые беспроводными электронными устройствами.

Чем больше длина радиоволны, тем меньшую энергию она несет и тем труднее ее зарегистрировать. Для приема антенну, в которой под действием радиоволны возникают электрические колебания, подключают к электрическому контуру. При попадании в резонанс с его собственной частотой колебания усиливаются и их можно зарегистрировать. Чтобы поймать радиоволны, идущие из космоса, применяют зеркала-антенны параболической формы, которые собирают радиоизлучение всей своей площадью и концентрируют его на небольшой антенне. Тем самым повышается чувствительность инструмента.

Большая часть микроволнового излучения (начиная с длины волны 3–5 мм) проходит через атмосферу. То же можно сказать про ультракороткие волны (УКВ), на которых вещают местные телевизионные и радиостанции (в т. ч. FM-станции) и ведется космическая радиосвязь. Излучение их передатчиков регистрируется только в пределах прямой видимости антенн. Окно прозрачности атмосферы в радиодиапазоне (голубые стрелки на плакате) заканчивается примерно на длине волны 10–30 метров.

Более длинные радиоволны отражаются от ионосферы Земли. Это не позволяет наблюдать космические радиоисточники на более длинных волнах, но зато обеспечивает возможность глобальной коротковолновой радиосвязи. Радиоволны в диапазоне от 10 до 100 метров могут огибать всю Землю, многократно отражаясь от ионосферы и поверхности Земли. Правда, их распространение зависит от состояния ионосферы, на которую сильно влияет солнечная активность. Поэтому коротковолновая связь не отличается высоким качеством и надежностью.

Средние и длинные волны также отражаются от ионосферы, но сильнее затухают с расстоянием. Для того чтобы сигнал можно было поймать на расстоянии более тысячи километров, требуются очень мощные передатчики. Сверхдлинные радиоволны, с длиной в сотни и тысячи километров, огибают Землю уже не благодаря ионосфере, а за счет волновых эффектов, которые также позволяют им проникать на некоторую глубину под поверхность океана. Это свойство используется для экстренной связи с боевыми подводными лодками в погруженном состоянии. Другие радиоволны не проходят через морскую воду, которая из-за растворенных в ней солей представляет из себя хороший проводник и поглощает или отражает радиоизлучение.

Никакого теоретического предела для длины радиоволн неизвестно. На практике экспериментально удалось создать и зарегистрировать радиоволну с длиной волны 38 тыс. км (частота 8 Гц).

Что изображено на плакате

В центре всей композиции находится человек. Вертикальная ось соответствует видимому диапазону — единственному непосредственно воспринимаемому человеком. Слева располагается коротковолновая часть спектра (ультрафиолет, рентген, гамма), справа — длинноволновая (инфракрасное излучение и радиоволны с особо выделенным поддиапазоном микроволнового излучения). Полоса спектра разделена на диапазоны и поддиапазоны, на границах которых указаны значения длины волны (а на «бумажной» версии плаката — также частоты, энергии кванта и температуры возможного источника излучения, если оно тепловое). Масштаб при разметке не соблюдается, но учтены относительные размеры диапазонов.

Чтобы подчеркнуть условность границ между диапазонами, цветовые переходы между ними сделаны плавными. Находящиеся по краям спектра радио- и гамма-диапазоны показаны расширяющимися и сходящими на нет, что указывает на их огромную величину по сравнению с остальными диапазонами и отсутствие внешних границ.

Плакат имеет многоуровневую вертикальную структуру. Уровни подписаны на плакате слева; при движении снизу вверх они соответствуют сдвигу от инженерно-прагматического аспекта применения различных излучений к бескорыстно-познавательному.

Слева и справа на полосе спектра разъяснены основные понятия и соотношения, необходимые для понимания обозначений на шкале.

Электромагнитное излучение — основной, но не единственный источник наших знаний о космосе. Чтобы обратить на это внимание, справа отдельной колонкой даются сведения об иных источниках информации.

Приемники излучения

Базовым уровнем является условная поверхность Земли, на которой стоят дети и располагается ряд астрономических инструментов, которые могут работать на Земле. Выше расположен уровень космических аппаратов, используемых для заатмосферных наблюдений. В некоторых диапазонах космические наблюдения — единственный способ получения информации о Вселенной.

Наземные астрономические инструменты (слева направо):

Космические инструменты:

Подземные инструменты:

Окна прозрачности

Над инструментами расположена полоса спектра, о которой уже было сказано выше. Непосредственно под ней стрелками отмечены так называемые окна прозрачности — диапазоны, в которых наблюдения можно вести с поверхности Земли. Голубые стрелки — окна, в которых излучение непосредственно достигает земной поверхности; красные стрелки в гамма-диапазоне указывают на возможность наблюдения с Земли вторичных эффектов, порожденных излучением в атмосфере.

Обзоры неба

Полоса спектра графически отделяет сферу активной деятельности человека от сферы небесных тел, которые доступны лишь для пассивного наблюдения. Сразу над спектром расположен ряд обзоров неба. Эти изображения показывают, как выглядит небесная сфера в разных диапазонах.

Цвета на всех изображениях (кроме видимого диапазона) условные. Все обзоры выполнены в проекции, традиционно применяемой для представления карты мира. В качестве экватора везде выбрана плоскость нашей Галактики — Млечного Пути. Почти во всех диапазонах это самый заметный объект на небе. Для каждого обзора указано его астрономическое обозначение, по которому в интернете можно найти дополнительную информацию.

Обзоры неба на плакате

Источники

Наконец, над обзорами располагаются примеры источников излучения — космических объектов, которые могут наблюдаться в соответствующих диапазонах спектра. В большинстве случаев они представлены реальными изображениями, полученными в ходе астрономических наблюдений. Немногочисленные исключения отмечены в подписях.

Ввиду особой важности видимого диапазона, несмотря на его узость, для него специально выделено расширенное место. Объекты там слева направо размещены в порядке увеличения масс.

Земное применение

Последний уровень плаката включает примеры земного применения различных видов излучения, показывающие, как электромагнитное излучение различных диапазонов используется в технике. Это направление фактически лежит вне основной темы плаката человек, излучение и Вселенная, однако появление этих примеров намечает другую важную линию человек, излучение и техника.

Схемы и графики

В нескольких местах на плакате размещены листочки с  несложными сделанными от руки эскизами. Их цель — проиллюстрировать механизмы, которые не ясны из фотографий или иных реалистичных изображений.

Основные соотношения и единицы измерения

λ = c/ν
E = h ·ν

λ (лямбда) — длина волны

Единица: 1 м (метр);

мкм = 10–6 м — микрон, микрометр;
нм = 10–9 м — нанометр

ν (ню) — частота

Единица: 1 Гц — одно колебание в секунду;

кГц = 1000 Гц — килогерц;
1 МГц = 106 Гц = 1 000 000 Гц — мегагерц;
ГГц = 109 Гц = 1 000 000 000 — гигагерц

E — энергия

Единица: 1 эВ = 1,6 ·10–19 Дж — электронвольт, энергия электрона, прошедшего разность потенциалов 1 вольт;

кэВ = 1000 эВ — килоэлектронвольт;
1 МэВ = 106 эВ = 1 000 000 эВ — мегаэлектронвольт;
ГэВ = 109 эВ = 1 000 000 000 эВ — гигаэлектронвольт

T — температура абсолютно черного тела

Единица: 1 К — кельвин, градус Кельвина.
Отсчитывается от абсолютного нуля; температура плавления льда — 273 К = 0°С; температура кипения воды — 373 К = 100°С

с = 3 ·108 м/с = 300 000 км/с — скорость света

h = 4 ·10–15 эВ ·с — постоянная Планка

Гамма-излучение

мягкое
энергия E — от 100 кэВ = 105 эВ
температураТ — от 20 млн К
частота ν (ню) — от 2 ·1019 Гц
длина волны λ (лямбда) — до 10–11 м

жесткое
E — от 10 МэВ = 107 эВ
Т — от 2 ·1010 К
ν — от 2 ·1021 Гц
λ — до 10–13 м

сверхвысоких энергий
E — от 100 ГэВ = 1011 эВ
Т — от 2 ·1014 К
ν — от 2 ·1025 Гц
λ — до 10–17 м

ультравысоких энергий
E — от 100 ТэВ = 1014 эВ
Т — от 2 ·1017 К
ν — от 2 ·1028 Гц
λ — до 10–20 м

Открыто в 1910 г. Генри Брэггом. Электромагнитная природа доказана в 1914 г. Эрнестом Резерфордом.Это самый широкий диапазон электромагнитного спектра, поскольку он не ограничен со стороны высоких энергий. Мягкое гамма-излучение образуется при энергетических переходах внутри атомных ядер, более жесткое — при ядерных реакциях. Гамма-кванты легко разрушают молекулы, в том числе биологические, но, к счастью, не проходят через атмосферу. Наблюдать их можно только из космоса.Гамма-кванты сверхвысоких энергий рождаются при столкновении заряженных частиц, разогнанных мощными электромагнитными полями космических объектов или земных ускорителей элементарных частиц. В атмосфере они крушат ядра атомов, порождая каскады частиц, летящих с околосветовой скоростью. При торможении эти частицы испускают свет, который наблюдают специальными телескопами на Земле.При энергии свыше 1014 эВ лавины частиц прорываются до поверхности Земли. Их регистрируют сцинтилляционными датчиками. Где и как образуются гамма-лучи ультравысоких энергий, пока не вполне ясно. Земным технологиям такие энергии недоступны. Самые энергичные кванты — 1020–1021 эВ, приходят из космоса крайне редко — примерно один квант в 100 лет на квадратный километр.

Источники

Остаток вспышки сверхновой звезды в гамма-лучах сверхвысоких энергий

Остаток вспышки сверхновой звезды в гамма-лучах сверхвысоких энергийИзображение получено в 2005 году гамма-телескопом HESS. Оно стало подтверждением того, что остатки сверхновых служат источниками космических лучей — энергичных заряженных частиц, которые, взаимодействуя с веществом, порождают гамма-излучение (см. Схема генерации гамма-излучения). Ускорение частиц, по всей видимости, обеспечивается мощным электромагнитным полем компактного объекта — нейтронной звезды, которая образуется на месте взорвавшейся сверхновой.

Схема генерации гамма-излучения

Схема генерации гамма-излученияСтолкновения энергичных заряженных частиц космических лучей с ядрами атомов межзвездной среды порождают каскады других частиц, а также гамма-квантов. Этот процесс аналогичен каскадам частиц в земной атмосфере, которые возникают под воздействием космических лучей (см. Схема телескопа для гамма-излучения сверхвысоких энергий). Происхождение космических лучей с самыми высокими энергиями еще изучается, но уже есть данные, что они могут генерироваться в остатках сверхновых звезд.

Аккреционный диск вокруг сверхмассивной черной дыры (рис. художника)

Аккреционный диск вокруг сверхмассивной черной дыры (рис. художника)В ходе эволюции крупных галактик в их центрах образуются сверхмассивные черные дыры, массой от нескольких миллионов до миллиардов масс Солнца. Они растут за счет аккреции (падения) межзвездного вещества и даже целых звезд на черную дыру.При интенсивной аккреции вокруг черной дыры образуется быстро вращающийся диск (из-за сохранения момента вращения падающего на дыру вещества). Из-за вязкого трения слоев, вращающихся с разной скоростью, он всё время разогревается и начинает излучать в рентгеновском диапазоне.Часть вещества при аккреции может выбрасываться в виде струй (джетов) вдоль оси вращающегося диска. Этот механизм обеспечивает активность ядер галактик и квазаров. В ядре нашей Галактики (Млечного Пути) также располагается черная дыра. В настоящее время ее активность минимальна, однако по некоторым признакам около 300 лет назад она была значительно выше.

Приемники

Гамма-телескоп сверхвысоких энергий HESS

Гамма-телескоп сверхвысоких энергий HESSРасположен в Намибии, состоит из 4 параболических тарелок диаметром 12 метров, размещенных на площадке размером 250 метров. На каждой из них закреплено 382 круглых зеркала диаметром 60 см, которые концентрируют тормозное излучение, возникающее при движении энергичных частиц в атмосфере (см. схему телескопа).Телескоп начал работать в 2002 году. Он в равной мере может использоваться для регистрации энергичных гамма-квантов и заряженных частиц — космических лучей. Одним из главных его результатов стало прямое подтверждение давнего предположения о том, что остатки вспышек сверхновых звезд являются источниками космических лучей.
Схема телескопа для гамма-излучения сверхвысоких энергий

Схема телескопа для гамма-излучения сверхвысоких энергий

Когда энергичный гамма-квант входит в атмосферу, он сталкивается с ядром одного из атомов и разрушает его. При этом порождается несколько обломков атомного ядра и гамма-квантов меньшей энергии, которые по закону сохранения импульса движутся почти в том же направлении, что и исходный гамма-квант. Эти обломки и кванты вскоре сталкиваются с другими ядрами, образуя в атмосфере лавину частиц.

Большинство этих частиц имеет скорость, превышающую скорость света в воздухе. Вследствие этого частицы испускают тормозное излучение, которое достигает поверхности Земли и может регистрироваться оптическими и ультрафиолетовыми телескопами. Фактически сама земная атмосфера служит элементом гамма-телескопа. Для гамма-квантов сверхвысоких энергий расходимость пучка, достигающего поверхности Земли, составляет около 1 градуса. Этим определяется разрешающая способность телескопа.

При еще более высокой энергии гамма-квантов до поверхности доходит сама лавина частиц — широкий атмосферный ливень (ШАЛ). Их регистрируют сцинтилляционными датчиками. В Аргентине сейчас строится обсерватория имени Пьера Оже (в честь первооткрывателя ШАЛ) для наблюдения гамма-излучения и космических лучей ультравысоких энергий. Он будет включать несколько тысяч цистерн с дистиллированной водой. Установленные в них ФЭУ будут следить за вспышками, происходящими в воде под воздействием энергичных частиц ШАЛ.

Гамма-обсерватория INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory)

Гамма-обсерватория INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory)Орбитальная обсерватория, работающая в диапазоне от жесткого рентгена до мягкого гамма-излучения (от 15 кэВ до 10 МэВ), была выведена на орбиту с космодрома Байконур в 2002 году. Обсерватория построена Европейским космическим агентством (ESA) при участии России и США. В конструкции станции использована такая же платформа, как и в ранее запущенной (1999) европейской рентгеновской обсерватории XMM-Newton.

Фотоэлектронный умножитель (ФЭУ)

Фотоэлектронный умножитель (ФЭУ)
Схема фотоэлектронного умножителя (ФЭУ)
Электронное устройство для измерения слабых потоков видимого и ультрафиолетового излучения. ФЭУ представляет собой электронную лампу с фотокатодом и набором электродов, к которым приложено последовательно возрастающее напряжение с суммарным перепадом до нескольких киловольт.Кванты излучения падают на фотокатод и выбивают из него электроны, которые движутся к первому электроду, образуя слабый фотоэлектрический ток. Однако по пути электроны ускоряются приложенным напряжением и выбивают из электрода значительно большее число электронов. Так повторяется несколько раз — по числу электродов. В итоге поток электронов, пришедший от последнего электрода к аноду, увеличивается на несколько порядков по сравнению с первоначальным фотоэлектрическим током. Это позволяет регистрировать очень слабые световые потоки, вплоть до отдельных квантов.Важная особенность ФЭУ — быстрота срабатывания. Это позволяет использовать их для регистрации скоротечных явлений, таких как вспышки, возникающие в сцинтилляторе при поглощении энергичной заряженной частицы или кванта.

Матрица ФЭУ

Матрица ФЭУОтдельный ФЭУ имеет очень небольшую площадь фотокатода и регистрирует только те кванты, которые движутся в его направлении. Чтобы повысить эффективность регистрации, вокруг объема сцинтиллятора размещают большое число ФЭУ, связанных в единую систему. Матрицы ФЭУ также применяют для регистрации частиц широких атмосферных ливней и в нейтринных телескопах.

Обзоры неба

Небо в гамма-лучах с энергией 100 МэВ (CGRO)

Небо в гамма-лучах с энергией 100 МэВ (CGRO)Обзор в диапазоне жесткого гамма-излучения выполнен космической гамма-обсерваторией «Комптон» (Compton Gamma Ray Observatory, CGRO), которая была запущена по программе NASA «Великие обсерватории» и с 1991 по 2000 год вела наблюдения в диапазоне от 20 кэВ до 30 ГэВ, то есть от жесткого рентгена до жесткого гамма-излучения.На карте отчетливо видна плоскость Галактики, где излучение формируется в основном остатками сверхновых. Яркие источники вдали от плоскости Галактики имеют в основном внегалактическое происхождение.

Небо в гамма-лучах с энергией 1,8 МэВ (CGRO-COMPTEL)

Небо в гамма-лучах с энергией 1,8 МэВ (CGRO-COMPTEL)Этот обзор в диапазоне мягкого гамма-излучения также выполнен обсерваторией «Комптон» (см. Небо в гамма-лучах с энергией 100 МэВ), а точнее установленным на ней телескопом COMPTEL.Источники также концентрируются к плоскости Галактики. В основном это компактные объекты.

Земное применение

Гамма-дефектоскоп

Гамма-дефектоскоп

Рентген

мягкий
энергия E — от 100 эВ
температура Т — от 200 тыс. К
частота ν (ню) — от 2 ·1016 Гц
длина волны λ (лямбда) — до 10 нм = 10–8 м

жесткий
E — от 10 кэВ = 104 эВ
Т — от 2 млн К
ν — от 2 ·1018 Гц
λ — до 10–10 м

Выделив новый тип изучения, Вильгельм Рентген назвал его X-лучами (X-rays). Под этим именем оно известно во всём мире, кроме России.Самый характерный источник рентгена в космосе — горячие внутренние области аккреционных дисков вокруг нейтронных звезд и черных дыр. Также в рентгеновском диапазоне светит солнечная корона, разогретая до 1–2 млн градусов, хотя на поверхности Солнца всего около 6 тысяч градусов.Но рентген можно получить и без экстремальных температур. В излучающей трубке медицинского рентгеновского аппарата электроны разгоняются напряжением в несколько киловольт и врезаются в металлический экран, испуская при торможении рентген. Ткани организма по-разному поглощают рентгеновское излучение, это позволяет изучать строение внутренних органов.Сквозь атмосферу рентген не проникает, космические рентгеновские источники наблюдают только с орбиты. Жесткий рентген регистрируют сцинтилляционными датчиками. При поглощении рентгеновских квантов в них ненадолго возникает свечение, которое улавливают ФЭУ. Мягкое рентгеновское излучение фокусируют металлическими зеркалами косого падения, от которых лучи отражаются под углом менее одного градуса, подобно гальке от поверхности воды.

Источники

Рентгеновские источники в районе центра нашей Галактики

Рентгеновские источники в районе центра нашей ГалактикиФрагмент снимка окрестностей центра Галактики, полученного рентгеновским телескопом «Чандра». Виден целый ряд ярких источников, которые, по всей видимости, являются аккреционными дисками вокруг компактных объектов — нейтронных звезд и черных дыр.

Окрестности пульсара в Крабовидной туманности

Окрестности пульсара в Крабовидной туманностиКрабовидная туманность — остаток сверхновой звезды, вспышка которой наблюдалась в 1054 году. Сама туманность — это рассеянная в космосе оболочка звезды, а ее ядро сжалось и образовало сверхплотную вращающуюся нейтронную звезду диаметром около 20 км.Вращение этой нейтронной звезды отслеживается по строго периодическим колебаниям ее излучения в радиодиапазоне. Но пульсар излучает также в видимом и рентгеновском диапазонах. В рентгене телескоп «Чандра» сумел получить изображение аккреционного диска вокруг пульсара и небольших джетов, перпендикулярных его плоскости (ср. Аккреционный диск вокруг сверхмассивной черной дыры).

Аккреционный диск в тесной двойной системе (рис. художника)

Аккреционный диск в тесной двойной системе (рис. художника)

Солнечные протуберанцы в рентгене

Солнечные протуберанцы в рентгенеВидимая поверхность Солнца разогрета примерно до 6 тысяч градусов, что соответствует видимому диапазону излучения. Однако корона, окружающая Солнце, разогрета до температуры более миллиона градусов и потому светится в рентгеновском диапазоне спектра.Данный снимок сделан во время максимума солнечной активности, которая меняется с периодом 11 лет. Сама поверхность Солнца в рентгене практически не излучает и потому выглядит черной. В период солнечного минимума рентгеновское излучение Солнца значительно снижается. Изображение получено японским спутником Yohkoh («Солнечный луч»), известным также как Solar-A, который работал с 1991 по 2001 год.

Приемники

Рентгеновский телескоп «Чандра»

Рентгеновский телескоп «Чандра»Одна из четырех «Великих обсерваторий» NASA, получившая название в честь американского астрофизика индийского происхождения Субраманьяна Чандрасекара (1910–95), лауреата Нобелевской премии (1983), специалиста по теории строения и эволюции звезд.Основной инструмент обсерватории — рентгеновский телескоп косого падения диаметром 1,2 м, содержащий четыре вложенных параболических зеркала косого падения (см. схему), переходящих в гиперболические. Обсерватория выведена на орбиту в 1999 и работает в диапазоне мягкого рентгена (100 эВ—10 кэВ). Среди множества открытий обсерватории «Чандра» — первый снимок аккреционного диска вокруг пульсара в Крабовидной туманности.
Схема рентгеновского телескопа с зеркалами косого падения

Схема рентгеновского телескопа с зеркалами косого падения

В оптических и радиотелескопах используется свойство параболоида сводить параллельный пучок излучения от далекого объекта в одну точку в фокальной плоскости. Но для этого излучение должно отражаться от зеркальной поверхности параболоида. Рентгеновские кванты настолько энергичны, что пробивают поверхность и поглощаются в веществе зеркала. Поэтому построить традиционного вида рентгеновский телескоп нельзя. За исключением одной возможности.

Мягкое рентгеновское излучение может отражаться от полированного металла, если падает на него очень полого, под углом меньше одного градуса. Это дает возможность использовать для фокусировки мягкого рентгена параболическое зеркало. Только брать приходится не вершину параболоида, а кольцевой пояс на порядочном удалении от нее. Рентгеновское зеркало косого падения похоже на отрезок трубы, чуть сужающийся к одному концу. Такое кольцо перехватывает очень небольшую долю излучения. Чтобы повысить эффективность телескопа, несколько таких зеркал косого падения концентрически вкладываются друг в друга. Изготовление такой системы требует высочайшей точности и чрезвычайно трудоемко.

Поскольку рентгеновские телескопы могут работать только в космосе, все они являются уникальными приборами.

Гамма-обсерватория INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory)

Фотоэлектронный умножитель (ФЭУ)

Матрица ФЭУ

Обзоры неба

Небо в рентгене в диапазоне 0,1–2,4 кэВ (ROSAT)

Небо в рентгене в диапазоне 0,1–2,4 кэВ (ROSAT)Обзор подготовлен по данным немецкой орбитальной обсерватории ROSAT (сокращение от «Röntgensatellit»), работавшей с 1990 по 1999 год в диапазоне вакуумного ультрафиолета и мягкого рентгена (6 эВ–2,4 кэВ). На борту обсерватории был установлен рентгеновский телескоп с зеркалами косого падения.

Земное применение

Рентгеновская трубка

Рентгеновская трубкаЭлектронная лампа, служащая источником мягкого рентгеновского излучения. Между двумя электродами внутри запаянной вакуумной колбы прикладывается напряжение 10–100 кВ. Под действием этого напряжения электроны разгоняются до энергии 10–100 кэВ. В конце пути они сталкиваются с полированной металлической поверхностью и резко тормозятся, отдавая значительную часть энергии в виде излучения в рентгеновском и ультрафиолетовом диапазоне.

Рентгеновский снимок

Рентгеновский снимокИзображение получается за счет неодинаковой проницаемости тканей человеческого тела для рентгеновского излучения. В обычном фотоаппарате объектив преломляет свет, отраженный объектом, и фокусирует его на пленке, где формируется изображение.Однако рентгеновское излучение очень трудно сфокусировать. Поэтому работа рентгеновского аппарата больше похожа на контактную печать снимка, когда негатив кладется на фотобумагу и на короткое время освещается. Только в данном случае в роли негатива выступает человеческое тело, в роли фотобумаги специальная фотопленка, чувствительная к рентгеновским лучам, а вместо источника освещения берется рентгеновская трубка.

Ультрафиолет

ближний
энергия E — от 3,3 эВ
температура Т — от 8 тыс. К
частота ν (ню) — от 8 ·1014 Гц
длина волны λ (лямбда) — до 380 нм

вакуумный
E — от 6 эВ
Т — от 14 тыс. К
ν — от 1,5 ·1015 Гц
λ — до 200 нм

Ультафиолетовый диапазон электромагнитного излучения располагается за фиолетовым (коротковолновым) краем видимого спектра.

Ближний ультрафиолет от Солнца проходит сквозь атмосферу. Он вызывает на коже загар и необходим для выработки витамина D. Но чрезмерное облучение чревато развитием рака кожи. УФ излучение вредно для глаз. Поэтому на воде и особенно на снегу в горах обязательно нужно носить защитные очки.

Более жесткое УФ излучение поглощают в атмосфере молекулы озона и других газов. Наблюдать его можно только из космоса, и поэтому его называют вакуумным ультрафиолетом.

Энергии ультрафиолетовых квантов достаточно для разрушения биологических молекул, в частности ДНК и белков. На этом основан один из методов уничтожения микробов. Считается, что пока в атмосфере Земли не было озона, поглощающего значительную часть ультрафиолета, жизнь не могла выйти из воды на сушу.

Ультрафиолет испускают объекты с температурой от тысяч до сотен тысяч градусов, например, молодые горячие массивные звезды. Однако УФ излучение поглощается межзвездными газом и пылью, поэтому часто нам видны не сами источники, а подсвеченные ими космические облака.

Для сбора УФ излучения используют зеркальные телескопы, а для регистрирации служат фотоэлектронные умножители, а в ближнем УФ, как и в видимом свете — ПЗС-матрицы.

Источники

Полярное сияние на Юпитере в ультрафиолете

Полярное сияние на Юпитере в ультрафиолетеСвечение возникает, когда заряженные частицы солнечного ветра сталкиваются с молекулами атмосферы Юпитера. Большинство частиц под действием магнитного поля планеты входит в атмосферу вблизи ее магнитных полюсов. Поэтому сияние возникает в относительно небольшой области. Аналогичные процессы идут на Земле и на других планетах, обладающих атмосферой и магнитным полем. Снимок получен космическим телескопом «Хаббл».

Приемники

Космический телескоп «Хаббл»

Обзоры неба

Небо в жестком ультрафиолете (EUVE)

Небо в жестком ультрафиолете (EUVE)Обзор построен орбитальной ультрафиолетовой обсерваторией Extreme Ultraviolet Explorer (EUVE, 1992–2001). Линейчатая структура изображения соответствует орбитальному движению спутника, а неоднородность яркости отдельных полос связана с изменениями в калибровке аппаратуры. Черные полосы — участки неба, которые не удалось пронаблюдать. Незначительное число деталей на этом обзоре связано с тем, что источников жесткого ультрафиолета относительно мало и, кроме того, ультрафиолетовое излучение рассеивается космической пылью.

Земное применение

Солярий

СолярийУстановка для дозированного облучения тела ближним ультрафиолетом для загара. Ультрафиолетовое излучение приводит к выделению в клетках пигмента меланина, который меняет цвет кожи.Медики делят ближний ультрафиолет на три участка: UV-A (400–315 нм), UV-B (315–280 нм) и UV-C (280–200 нм). Самый мягкий ультрафиолет UV-A стимулирует освобождение меланина, запасенного в меланоцитах — клеточных органеллах, где он вырабатывается. Более жесткий ультрафиолет UV-B запускает производство нового меланина, а также стимулирует выработку в коже витамина D. Модели соляриев различаются по мощности излучения в этих двух участках УФ-диапазона.В составе солнечного света у поверхности Земли до 99% ультрафиолета приходится на участок UV-A, а остальное — на UV-B. Излучение в диапазоне UV-C обладает бактерицидным действием; в солнечном спектре его намного меньше, чем UV-A и UV-B, кроме того, большая его часть поглощается в атмосфере. Ультрафиолетовое излучение вызывает иссушение и старение кожи и способствует развитию раковых заболеваний. Причем излучение в диапазоне UV-A увеличивает вероятность самого опасного вида рака кожи — меланомы.Излучение UV-B практически полностью блокируется защитными кремами, в отличие от UV-A, которое проникает через такую защиту и даже частично через одежду. В целом считается, что очень небольшие дозы UV-B полезны для здоровья, а остальной ультрафиолет вреден.

Детектор валюты

Детектор валютыУльтрафиолетовое излучение применяется для определения подлинности денежных купюр. В купюры впрессовываются полимерные волокна со специальным красителем, который поглощает ультрафиолетовые кванты, а потом испускает менее энергичное излучение видимого диапазона. Под действием ультрафиолета волокна начинают светиться, что и служит одним из признаков подлинности.Ультрафиолетовое излучение детектора невидимо для глаза, синее свечение, заметное при работе большинства детекторов, связано с тем, что применяемые источники ультрафиолета излучают также и в видимом диапазоне.

Видимый диапазон

энергия E — 1,7–3,3 эВ
температура Т — 4–8 тыс. К
частота ν (ню) — 4–8 ·1014 Гц
длина волны λ (лямбда) — 380–730 нм

Диапазон видимого света — самый узкий во всем спектре. Длина волны в нем меняется менее чем в два раза. На видимый свет приходится максимум излучения в спектре Солнца. Наши глаза в ходе эволюции адаптировались к его свету и способны воспринимать излучение только в этом узком участке спектра. Почти все астрономические наблюдения до середины XX века велись в видимом свете. Основной источник видимого света в космосе — звезды, поверхность которых нагрета до нескольких тысяч градусов и потому испускает свет. На Земле применяются также нетепловые источники света, например, флюоресцентные лампы и полупроводниковые светодиоды.

Для сбора света от слабых космических источников используются зеркала и линзы. Приемниками видимого света служат сетчатка глаза, фотопленка, применяемые в цифровых фотоаппаратах полупроводниковые кристаллы (ПЗС-матрицы), фотоэлементы и фотоэлектронные умножители. Принцип действия приемников основан на том, что энергии кванта видимого света достаточно, чтобы спровоцировать химическую реакцию в специально подобранном веществе или выбить из вещества свободный электрон. Затем по концентрации продуктов реакции или по величине освободившегося заряда определяется количество поступившего света.

Источники

Комета Хейла-Боппа

Комета Хейла-БоппаОдна из самых ярких комет конца XX века. Она была открыта в 1995 году, когда находилась еще за орбитой Юпитера. Это рекордное расстояние для обнаружения новой кометы. Прошла перигелий 1 апреля 1997 года, а в конце мая достигла максимального блеска — около нулевой звездной величины. Всего комета оставалась видимой невооруженным глазом в течение 18,5 месяцев — вдвое больше прежнего рекорда, установленного великой кометой 1811 года. На снимке видны два хвоста кометы — пылевой и газовый. Давление солнечного излучения направляет их прочь от Солнца.

Планета Сатурн

Планета СатурнВторая по величине планета Солнечной системы. Относится к классу газовых гигантов. Снимок сделан межпланетной станцией «Кассини», которая с 2004 года ведет исследования в системе Сатурна. В конце XX века системы колец обнаружены у всех планет-гигантов — от Юпитера до Нептуна, но только у Сатурна они легко доступны наблюдению даже в небольшой любительский телескоп.

Солнечные пятна

Солнечные пятнаОбласти пониженной температуры на видимой поверхности Солнца. Их температура 4300–4800 К — примерно на полторы тысячи градусов ниже, чем на остальной поверхности Солнца. Из-за этого их яркость в 2–4 раза ниже, что по контрасту создает впечатление черных пятен. Пятна возникают, когда магнитное поле замедляет конвекцию и тем самым вынос тепла в верхних слоях вещества Солнца. Они живут от нескольких часов до нескольких месяцев. Число пятен служит индикатором активности Солнца. Наблюдая пятна на протяжении нескольких дней, легко заметить вращение Солнца. Снимок сделан любительским телескопом.Внимание! Ни в коем случае нельзя смотреть на Солнце в телескоп или другой оптический прибор без специальных защитных фильтров. При использовании фильтров их следует надежно крепить перед объективом, а не у окуляра инструмента, где фильтр может повредиться из-за перегрева. В любом случае безопаснее наблюдать проекцию изображения Солнца на лист бумаги за окуляром телескопа.

Рассеянное звездное скопление Плеяды

Рассеянное звездное скопление ПлеядыСодержит около 3 тысяч звезд, из которых семь видны невооруженным глазом. Скопление имеет поперечник 13 световых лет и расположено в 400 световых годах от Земли. Рассеянные скопления образуются при сжатии космических газопылевых облаков под действием самогравитации (притяжения одних частей облака к другим). В ходе сжатия облако дробится на части, из которых формируются отдельные звезды. Эти звезды слабо связаны между собой гравитацией, и со временем такие скопления рассеиваются.

Спиральная галактика M51

Спиральная галактика M51Спиральная галактика, диск которой мы наблюдаем плашмя, известная также под названием Водоворот. Расположена на расстоянии около 37 млн световых лет. Ее диаметр составляет около 100 тысяч световых лет. У конца одной из спиральных ветвей располагается галактика-компаньон.Обозначение M51 относится ко всей паре в целом. По отдельности основная галактика и ее компаньон обозначаются NGC 5194 и 5195. Гравитационное взаимодействие с компаньоном уплотняет газ в близких к нему участках спиралей, что ускоряет звездообразование. Взаимодействие — типичное явление в мире галактик. Галактика доступна для наблюдения в небольшой любительский телескоп.

Приемники

Визуальные наблюдения

Визуальные наблюденияВ профессиональной астрономии визуальные наблюдения больше не применяются. Лет 20 назад их полностью вытеснили цифровая фотография, фотометрия, спектрометрия и компьютерная обработка данных.Однако романтика визуальных наблюдений по-прежнему вдохновляет любителей астрономии. Невооруженному глазу доступны Солнце, Луна, пять планет, около 6 тысяч звезд и четыре галактики — Млечный Путь, Туманность Андромеды, Большое и Малое Магеллановы облака. Эпизодически появляются видимые глазом кометы и астероиды.Практически каждую ночь можно наблюдать сгорающие в атмосфере космические песчинки — метеоры, а также неторопливо ползущие по небу искусственные спутники Земли. В высоких широтах наблюдаются полярные сияния, в низких при благоприятных условиях виден призрачный зодиакальный свет — освещенная Солнцем космическая пыль. И всё это разнообразие наблюдается в крайне узком спектральном диапазоне, который почти в тысячу раз уже инфракрасного диапазона.В бинокль видно в десятки раз больше звезд и множество туманных объектов. Любительскому телескопу доступно в тысячи раз больше звезд, детали на поверхности планет, их спутники, а также сотни туманностей и галактик. Но при этом поле зрения у телескопа значительно меньше, и для успешных наблюдений его надо надежно закрепить, а еще лучше медленно поворачивать вслед за вращением неба.

Любительский телескоп

Любительский телескопВ современном мире любительская астрономия стала увлекательным и престижным хобби. Ряд фирм, таких как Meade и Celestron, производят телескопы специально для любителей. Простейшие инструменты с диаметром объектива от 50–70 мм стоят 200–500 долларов, самые крупные с диаметром 350–400 мм сравнимы по стоимости с престижным автомобилем и требуют стационарной установки на бетонном фундаменте под куполом. В умелых руках такие инструменты вполне могут дать вклад в большую науку.Самые популярные в мире любительские телескопы имеют диаметр около 200 мм и построены по оптической схеме, изобретенной советским оптиком Максутовым. Они имеют короткую трубу, которую обычно устанавливают на вилочной монтировке и снабжают компьютером для автоматического наведения на различные объекты по их небесным координатам. Именно такой инструмент показан на плакате.

24-метровый телескоп «Магеллан» (строящийся)

24-метровый телескоп «Магеллан» (строящийся)В 1975 году в СССР построили 6-метровый телескоп БТА. Чтобы главное зеркало телескопа не деформировалось, его сделали толщиной около метра. Казалось, что дальше увеличивать размеры зеркал невозможно. Однако выход был найден. Зеркала стали делать относительно тонкими (15–25 см) и разгружать на множество опор, положением которых управляет компьютер. Возможность изгибать зеркала, гибко подстраивая их форму, позволила построить телескопы диаметром до 8 метров.Но и на этом астрономы не остановились. На самых крупных инструментах зеркала делят на сегменты, совмещая положение частей с точностью до сотых долей микрона. Так устроены крупнейшие в мире 10-метровые телескопы Кека. Следующим шагом станет американский телескоп «Магеллан», в котором будет 7 зеркал, каждое диаметром 8 метров. Вместе они будут работать как 24-метровый телескоп. А в Европейском Союзе началась работа над еще более амбициозным проектом — телескопом диаметром 42 метра.Главным препятствием для реализации возможностей таких инструментов становится земная атмосфера, турбулентность которой искажает изображение. Для компенсации помех, за состоянием атмосферы постоянно наблюдает специальная аппаратура и на ходу изгибает зеркало телескопа так, чтобы компенсировать искажения. Эта технология называется адаптивной оптикой.
Схема оптического телескопа-рефлектора

Схема оптического телескопа-рефлектора

Телескоп выполняет две задачи: собрать как можно больше света слабого источника и различить как можно более мелкие его детали. Светособирающая способность телескопа определяется площадью главного зеркала, разрешающая способность — его диаметром. Именно поэтому астрономы стремятся построить как можно более крупные телескопы.

У небольших телескопов в качестве объектива может использоваться собирающая линза (телескоп-рефрактор), но чаще применяется вогнутое параболическое зеркало (телескоп-рефлектор). Главная функция объектива — построить изображение наблюдаемых источников в фокальной плоскости телескопа, где располагают фотокамеру или другое оборудование. В любительских телескопах для визуальных наблюдений позади фокальной плоскости ставят окуляр, представляющий собой, по сути, сильную лупу, в которую рассматривается созданное объективом изображение.

Однако у рефлектора фокальная плоскость находится перед зеркалом, что не всегда удобно при наблюдениях. Используют разные приемы, чтобы вывести пучок света за пределы тубы телескопа. В системе Ньютона для этого используется диагональное зеркало. В более сложной системе Кассегрена (на плакате) напротив главного зеркала ставят вторичное выпуклое зеркало в форме гиперболоида вращения. Оно отражает пучок назад, где он выходит через отверстие в центре главного зеркала. В системе Максутова на переднем конце трубы телескопа ставят тонкую выпукло-вогнутую линзу. Она не только предохраняет зеркала телескопа от повреждения, но и позволяет сделать главное зеркало не параболическим, а сферическим, что намного дешевле в изготовлении.

Космический телескоп «Хаббл»

Космический телескоп «Хаббл»Самый крупный орбитальный оптический телескоп. Диаметр его главного зеркала составляет 2,4 метра. Выведен на орбиту в 1991 году. Может вести наблюдения в видимом, ближнем инфракрасном и ближнем ультрафиолетовом диапазонах. Единственный космический телескоп, который посещали астронавты для ремонта и обслуживания.Телескопу имени Хаббла астрономия обязана десятками открытий. В числе прочего он позволил увидеть, как выглядели галактики в эпоху их зарождения около 13 млрд лет назад. В настоящее время на смену телескопу Хаббла создается космический телескоп нового поколения — James Webb Space Telescope (JWST) диаметром 6,5 метров, который планируется вывести в космос в 2013 году. Правда, работать он будет не в видимом диапазоне, а в ближнем и среднем инфракрасном.

Обзоры неба

Всё небо в видимом диапазоне

Всё небо в видимом диапазонеЗдесь вновь отчетливо видна плоскость нашей Галактики — Млечного Пути. Ее свечение складывается из света сотен миллиардов звезд и туманностей. Также хорошо заметны темные волокна пылевых облаков, которые заслоняют от нас часть света звезд в галактической плоскости.Туманные образования в нижней половине обзора — Большое и Малое Магеллановы облака, спутники нашей Галактики. Яркие звезды, которые кажутся нам основными объектами на небе, на такой мелкомасштабной карте практически незаметны.

Небо в линии водорода H-альфа, 656 нм

Небо в линии водорода H-альфа, 656 нмСпектральная линия H-альфа соответствует переходу электрона в атоме водорода с третьего энергетического уровня на второй.Это первая линия так называемой серии Бальмера, которая вся состоит из переходов с разных более высоких уровней на второй. Имеются аналогичные серии переходов на первый уровень (серия Лаймана), на третий уровень (серия Пашена) и на другие уровни. Отличительная особенность серии Бальмера состоит в том, что она практически целиком располагается в видимом диапазоне, что значительно облегчает наблюдения. В частности, линия H-альфа приходится на красный участок спектра.Излучение в этой линии возникает в разреженных космических облаках атомарного водорода. Атомы в них возбуждаются ультрафиолетовым излучением горячих звезд, а потом отдают энергию, переходя на более низкие уровни. Выделяя при помощи фильтров линию H-альфа, можно целенаправленно наблюдать распределение нейтрального водорода.Обзор неба в линии H-альфа показывает распределение газа в нашей Галактике. На нем видны крупные пузыри газа вокруг областей активного звездообразования.

Земное применение

Микроскоп

МикроскопПри рассматривании предметов на расстоянии ясного зрения (25 см) человек может различить детали величиной около 0,1 мм (угловое разрешение глаза порядка одной угловой минуты 1′ = 2,3×10-4 рад). Чтобы увидеть более мелкие детали, смотреть надо с меньшего расстояния, но на расстояние менее 10 см глазу очень трудно настроиться.Добиться этого можно, используя лупу, оптическая сила которой добавляется к оптической силе хрусталика. Но и в этом случае предел увеличения составляет примерно 25х, т. к. размер такой сильной лупы становится очень маленьким и размещать ее приходится близко к образцу. Фактически такая лупа становится объективом микроскопа. Смотреть в него глазом очень неудобно, но можно поступить иначе.Тщательно отрегулировав расстояние от объектива до предмета, можно получить на некотором отдалении позади объектива его увеличенный образ. Поместив за ним другую лупу и рассматривая в нее построенный объективом образ, можно добиться увеличения в сотни и даже более тысячи раз.Однако увеличения заметно более 1000 раз не имеют практического смысла, поскольку волновая природа света не позволяет рассмотреть детали размером меньше длины волны (400–700 нм). При увеличении в 2000 раз такие детали видны как миллиметровое деление на линейке, которую вы держите в руках.

Дальнейшее повышение увеличения не откроет вам новых подробностей. Чтобы увидеть детали с большим разрешением, требуются рентгеновские лучи с меньшей длиной волны или вообще потоки электронов, у которых (согласно квантовой механике) длина волны меньше. Также можно применять механический щуп с очень точной системой наводки — так называемый сканирующий микроскоп.

Лампа накаливания

Лампа накаливанияИспускает видимый свет и инфракрасное излучение за счет нагрева электрическим током помещенной в вакуум вольфрамовой спирали. Спектр излучения очень близок к чернотельному с температурой около 2000 К.При такой температуре максимум излучения приходится на ближнюю инфракрасную область и потому расходуется бесполезно для целей освещения. Существенно поднять температуру не удается, поскольку при этом спираль быстро выходит из строя. Поэтому лампы накаливания оказываются неэкономичным осветительным прибором. Лампы дневного света значительно эффективнее преобразуют электроэнергию в свет.

Инфракрасный диапазон

ближний
энергия E — до 1,7 эВ
температура Т — до 4 тыс. К
частота ν (ню) — до 4 ·1014 Гц
длина волны λ (лямбда) — от 730 нм

средний
E — до 0,25 эВ
Т — до 600 К
ν — до 6 ·1013 Гц
λ — от 5 мкм

дальний
E — до 0,04 эВ
Т — до 90 К
ν — до 1013 Гц
λ — от 30 мкм

Уильям Гершель впервые заметил, что за красным краем полученного с помощью призмы спектра Солнца есть невидимое излучение, вызывающее нагрев термометра. Это излучение стали позднее называть тепловым или инфракрасным.Ближнее ИК-излучение очень похоже на видимый свет и регистрируется такими же инструментами. В среднем и дальнем ИК используются болометры, отмечающие изменения.В среднем ИК-диапазоне светит вся планета Земля и все предметы на ней, даже лед. За счет этого Земля не перегревается солнечным теплом. Но не всё ИК-излучение проходит через атмосферу. Есть лишь несколько окон прозрачности, остальное излучение поглощается углекислым газом, водяным паром, метаном, озоном и другими парниковыми газами, которые препятствуют быстрому остыванию Земли.Из-за поглощения в атмосфере и теплового излучения предметов телескопы для среднего и дальнего ИК выносят в космос и охлаждают до температуры жидкого азота или даже гелия.

ИК-диапазон — один из самых интересных для астрономов. В нем светит космическая пыль, важная для образования звезд и эволюции галактик. ИК-излучение лучше видимого проходит через облака космической пыли и позволяет видеть объекты, недоступные наблюдению в других участках спектра.

Источники

В инфракрасном диапазоне телескоп «Хаббл» может увидеть больше галактик, чем звезд

В инфракрасном диапазоне телескоп «Хаббл» может увидеть больше галактик, чем звездФрагмент одного из так называемых Глубоких полей «Хаббла». В 1995 году космический телескоп в течение 10 суток накапливал свет, приходящий с одного участка неба. Это позволило увидеть чрезвычайно слабые галактики, расстояние до которых составляет до 13 млрд световых лет (менее одного миллиарда лет от Большого взрыва). Видимый свет от таких далеких объектов испытывает значительное красное смещение и становится инфракрасным.Наблюдения велись в области, далекой от плоскости галактики, где видно относительно мало звезд. Поэтому большая часть зарегистрированных объектов — это галактики на разных стадиях эволюции.

Галактика Сомбреро в инфракрасном диапазоне

Галактика Сомбреро в инфракрасном диапазонеГигантская спиральная галактика, обозначаемая также как M104, расположена в скоплении галактик в созвездии Девы и видна нам почти с ребра. Она обладает огромным центральным балджем (шарообразное утолщение в центре галактики) и содержит около 800 млрд звезд — в 2-3 раза больше, чем Млечный Путь.В центре галактики находится сверхмассивная черная дыра с массой около миллиарда масс Солнца. Это определено по скоростям движения звезд вблизи центра галактики. В инфракрасном диапазоне в галактике отчетливо просматривается кольцо газа и пыли, в котором активно рождаются звезды.

Туманности и пылевые облака вблизи центра Галактики в ИК-диапазоне

Туманности и пылевые облака вблизи центра Галактики в ИК-диапазоне

Приемники

Инфракрасный космический телескоп «Спитцер»

Инфракрасный космический телескоп «Спитцер»Главное зеркало диаметром 85 см изготовлено из бериллия и охлаждается до температуры 5,5 К для снижения собственного инфракрасного излучения зеркала.Телескоп был запущен в августе 2003 года по программе четырех великих обсерваторий NASA, включающей:

Ожидается, что срок службы телескопа «Спитцер» составит около 5 лет. Свое название телескоп получил в честь астрофизика Лаймана Спитцера (1914–97), который в 1946 году, задолго до запуска первого спутника, опубликовал статью «Преимущества для астрономии внеземной обсерватории», а спустя 30 лет убедил NASA и американский Конгресс начать разработку космического телескопа «Хаббл».

Обзоры неба

Небо в ближнем инфракрасном диапазоне 1–4 мкм и в среднем инфракрасном диапазоне 25 мкм (COBE/DIRBE)

Небо в ближнем инфракрасном диапазоне 1–4 мкм (COBE/DIRBE)В ближнем инфракрасном диапазоне Галактика просматривается еще более отчетливо, чем в видимом.
Небо в среднем инфракрасном диапазоне 25 мкм (COBE/DIRBE)А вот в среднем ИК-диапазоне Галактика едва видна. Наблюдениям сильно мешает пыль, находящаяся в Солнечной системе. Она расположена вдоль плоскости эклиптики, которая наклонена к плоскости Галактики под углом около 50 градусов.Оба обзора получены инструментом DIRBE (Diffuse Infrared Background Experiment) на борту спутника COBE (Cosmic Background Explorer). В ходе этого эксперимента, начатого в 1989 году, были получены полные карты инфракрасной яркости неба в диапазоне от 1,25 до 240 мкм.

Земное применение

Прибор ночного видения

Прибор ночного виденияВ основе прибора лежит электронно-оптический преобразователь (ЭОП), позволяющий значительно (от 100 до 50 тысяч раз) усиливать слабый видимый или инфракрасный свет.Объектив создает изображение на фотокатоде, из которого, как и в случае ФЭУ, выбиваются электроны. Далее они разгоняются высоким напряжением (10–20 кВ), фокусируются электронной оптикой (электромагнитным полем специально подобранной конфигурации) и падают на флуоресцентный экран, подобный телевизионному. На нем изображение рассматривают в окуляры.Разгон фотоэлектронов дает возможность в условиях низкой освещенности использовать для получения изображения буквально каждый квант света, однако в полной темноте требуется подсветка. Чтобы не выдать присутствие наблюдателя, для этого пользуются прожектором ближнего ИК-диапазона (760–3000 нм).Существуют также приборы, которые улавливают собственное тепловое излучение предметов в среднем ИК-диапазоне (8–14 мкм). Такие приборы называются тепловизорами, они позволяют заметить человека, животное или нагретый двигатель за счет их теплового контраста с окружающим фоном.

Радиатор

РадиаторВся энергия, потребляемая электрическим обогревателем, в конечном счете, переходит в тепло. Значительная часть тепла уносится воздухом, который соприкасается с горячей поверхностью, расширяется и поднимается вверх, так что обогревается в основном потолок.Во избежание этого обогреватели снабжают вентиляторами, которые направляют теплый воздух, например, на ноги человека и способствуют перемешиванию воздуха в помещении. Но есть и другой способ передачи тепла окружающим предметам: инфракрасное излучение обогревателя. Оно тем сильнее, чем горячее поверхность и больше ее площадь.Для увеличения площади радиаторы делают плоскими. Однако при этом температура поверхности не может быть высокой. В других моделях обогревателей используется спираль, разогреваемая до нескольких сотен градусов (красное каление), и вогнутый металлический рефлектор, который создает направленный поток инфракрасного излучения.

Радиоизлучение и микроволны

микроволны: миллиметровые (мм), сантиметровые (см), дециметровые (дм)
энергия E — до 0,001 эВ
температура Т — до 2 К
частота ν (ню) — до 200 ГГц = 2 ·1011 Гц
длина волны λ (лямбда) — от 1 мм

ультракороткие волны (УКВ): дециметровые, метровые
E — до 4 ·10–6 эВ
Т — до 0,01 К
ν — до 1 ГГц = 109 Гц
λ — от 30 см

короткие (КВ), средние (СВ), длинные (ДВ) волны
E — до 1,2 ·10–8 эВ
Т — до 0,0003 К
ν — до 30 МГц = 3 ·107 Гц
λ — от 10 м

сверхдлинные волны (СДВ)
E — до 4 ·10–10 эВ
Т — до 10–6 К
ν — до 100 КГц
λ — от 3 км

Диапазон радиоизлучения противоположен гамма-излучению и тоже неограничен с одной стороны — со стороны длинных волн и низких частот.

Инженеры делят его на множество участков. Самые короткие радиоволны используют для беспроводной передачи данных (интернет, сотовая и спутниковая телефония); метровые, дециметровые и ультракороткие волны (УКВ) занимают местные теле- и радиостанции; короткие волны (КВ) служат для глобальной радиосвязи — они отражаются от ионосферы и могут огибать Землю; средние и длинные волны используют для регионального радиовещания. Сверхдлинные волны (СДВ) — от 1 км до тысяч километров — проникают сквозь соленую воду и применяются для связи с подводными лодками, а также для поиска полезных ископаемых.

Энергия радиоволн крайне низка, но они возбуждают слабые колебания электронов в металлической антенне. Эти колебания затем усиливаются и регистрируются.

Атмосфера пропускает радиоволны длиной от 1 мм до 30 м. Они позволяют наблюдать ядра галактик, нейтронные звезды, другие планетные системы, но самое впечатляющее достижение радиоастрономии — рекордно детальные изображения космических источников, разрешение которых превосходит десятитысячную долю угловой секунды.

Микроволны

Микроволны — это поддиапазон радиоизлучения, примыкающий к инфракрасному. Его также называют сверхвысокочастотным (СВЧ) излучением, так как у него самая большая частота в радиодиапазоне.

Микроволновый диапазон интересен астрономам, поскольку в нем регистрируется оставшееся со времен Большого взрыва реликтовое излучение (другое название — микроволновый космический фон). Оно было испущено 13,7 млрд лет назад, когда горячее вещество Вселенной стало прозрачным для собственного теплового излучения. По мере расширения Вселенной реликтовое излучение остыло и сегодня его температура составляет 2,7 К.

Реликтовое излучение приходит на Землю со всех направлений. Сегодня астрофизиков интересуют неоднородности свечения неба в микроволновом диапазоне. По ним определяют, как в ранней Вселенной начинали формироваться скопления галактик, чтобы проверить правильность космологических теорий.

А на Земле микроволны используются для таких прозаических задач, как разогрев завтрака и разговоры по мобильному телефону.

Атмосфера прозрачна для микроволн. Их можно использовать для связи со спутниками. Есть также проекты передачи энергии на расстояние с помощью СВЧ-пучков.

Источники

Крабовидная туманность в радиодиапазоне

Крабовидная туманность в радиодиапазонеКрабовидная туманность — наиболее изученный остаток взрыва сверхновой. На данном изображении показано, как она выглядит в радиодиапазоне.Радиоизлучение генерируется быстрыми электронами при движении в магнитном поле. Поле заставляет электроны поворачивать, то есть двигаться ускоренно, а при ускоренном движении заряды испускают электромагнитные волны. По этому изображению, которое построено по данным наблюдений американской Национальной радиоастрономической обсерватории (NRAO), можно судить о характере магнитных полей в Крабовидной туманности.

Компьютерная модель распределения вещества во Вселенной

Компьютерная модель распределения вещества во ВселеннойИзначально распределение вещества во Вселенной было почти идеально равномерным. Но все же небольшие (возможно даже квантовые) флуктуации плотности за многие миллионы и миллиарды лет привели к тому, что вещество фрагментировалось.На рисунке представлен результат компьютерного моделирования эволюции Вселенной. Рассчитывалось движение 10 млрд частиц под действием взаимного тяготения на протяжении 15 млрд лет. В результате сформировалась пористая структура, отдаленно напоминающая губку. Скопления-галактики концентрируются в ее узлах и ребрах, а между ними находятся обширные пустыни, где почти нет объектов, — астрономы называют их войдами (от англ. void — пустота).Похожие результаты дают наблюдательные обзоры распределения галактик в пространстве. Для сотен тысяч галактик определяются координаты на небе и красные смещения, по которым вычисляются расстояния до галактик.Правда, достичь хорошего согласия расчетов и наблюдений удается, только если предположить, что видимое (светящееся в электромагнитном спектре) вещество составляет всего около 5% всей массы Вселенной. Остальное приходится на так называемые темную материю и темную энергию, которые проявляют себя только своим тяготением и природа которых пока не установлена. Их изучение — одна из наиболее актуальных задач современной астрофизики.

Квазар: активное ядро галактики

Квазар: активное ядро галактикиКогда на сверхмассивную черную дыру в центре галактики аккрецирует слишком много вещества, выделяется огромное количество энергии.Эта энергия разгоняет часть вещества до околосветовых скоростей и выбрасывает его релятивистскими плазменными джетами в двух противоположных направлениях перпендикулярно оси аккреционного диска. Когда эти джеты сталкиваются с межгалактической средой и тормозятся, входящие в них частицы испускают радиоволны.На радиоизображении квазара красным цветом показаны области высокой интенсивности радиоизлучения: в центре активное ядро галактики, а по бокам от него — два джета. Сама галактика в радиодиапазоне практически не излучает.

Радиогалактика: карта изолиний радиояркости

Радиогалактика: карта изолиний радиояркостиДля изображения космических объектов в диапазонах излучения, отличных от видимого, используются различные приемы. Чаще всего это искусственные цвета и карты изолиний.С помощью искусственных цветов можно показать, как выглядел бы объект, если бы светочувствительные рецепторы человеческого глаза были чувствительны не к определенным цветам в видимом диапазоне, а к другим частотам электромагнитного спектра.Карты изолиний обычно используются для представления изображений, полученных на одной длине волны, что особенно характерно для радиодиапазона. По принципу построения они подобны горизонталям на топографической карте, только вместо точек с фиксированной высотой над горизонтом ими соединяют точки с одинаковой радиояркостью источника на небе.

Приемники

Микроволновый орбитальный зонд WMAP

Микроволновый орбитальный зонд WMAPКосмический фон микроволнового излучения, называемый также реликтовым излучением, создает радиошум, который почти одинаков во всех направлениях на небе. И всё же в нем есть очень небольшие вариации интенсивности — около тысячной доли процента. Это следы неоднородностей плотности вещества в молодой Вселенной, которые послужили зародышами для будущих скоплений галактик.Изучение микроволнового фона было начато наземными радиотелескопами, продолжено советским прибором «Реликт-1» на борту спутника «Прогноз-9» в 1983 г. и американским спутником COBE (Cosmic Background Explorer) в 1989 г., но самую подробную карту распределения микроволнового фона по небесной сфере построил в 2003 г. зонд WMAP (Wilkinson Microwave Anisotropy Probe).Полученные данные накладывают существенные ограничения на модели образования галактик и эволюции Вселенной.

Система радиотелескопов ALMA (строится)

Система радиотелескопов ALMA (строится)У радиотелескопа, как и у оптического, разрешение пропорционально диаметру, а чувствительность — площади антенны. Строить подвижные антенны крупнее 100 метров невозможно из-за ограничений по прочности конструкции. Но можно совместно обрабатывать излучение, собранное несколькими небольшими радиотелескопами, как бы синтезируя большое зеркало из маленьких кусочков.Такая система называется радиоинтерферометром. Строящийся в Чили радиоинтерферометр ALMA будет состоять из 64 12-метровых антенн, размещенных на территории поперечником 15 км. Система будет работать в сантиметровом, миллиметровом и субмиллиметровом диапазонах. Последний доступен благодаря тому, что строительство ведется на высоте более 5 тысяч метров в условиях очень сухого климата.В радиоастрономии уже давно применяются интерферометры с антеннами, размещенными на разных континентах. В последнее время принцип интерферометра стали использовать и в оптическом диапазоне, например, в системе из четырех 8-метровых телескопов VLT Европейской Южной обсерватории.
Схема радиотелескопа

Схема радиотелескопа

Радиотелескоп устроен отчасти подобно оптическому телескопу. Он тоже имеет параболическое зеркало, которое собирает радиоволны. Однако из-за большой длины радиоволн в фокусе нельзя получить изображение объекта, поскольку размер пиксела должен быть не меньше длины волны.

Поэтому в фокусе радиотелескопа вместо камеры (как в оптических инструментах) устанавливается единственный радиометр, измеряющий интенсивность собранного излучения. А для получения изображения радиотелескопу приходится линия за линией сканировать выбранный участок неба. Результат обычно представляют картой изолиний радиояркости, хотя может быть построено и обычное полутоновое изображение.

Обзоры неба

Небо в микроволновом диапазоне 1,9 мм (WMAP)

Небо в микроволновом диапазоне 1,9 мм (WMAP)Космический микроволновый фон, называемый также реликтовым излучением, представляет собой остывшее свечение горячей Вселенной. Впервые оно было обнаружено А. Пензиасом и Р. Вильсоном в 1965 году (Нобелевская премия 1978 г.) Первые измерения показали, что излучение совершенно однородно по всему небу.В 1992 году было объявлено об открытии анизотропии (неоднородности) реликтового излучения. Этот результат был получен советским спутником «Реликт-1» и подтвержден американским спутником COBE (см. Небо в инфракрасном диапазоне). COBE также определил, что спектр реликтового излучения очень близок к чернотельному. За этот результат присуждена Нобелевская премия 2006 года.Вариации яркости реликтового излучения по небу не превышают одной сотой доли процента, но их наличие указывает на едва заметные неоднородности в распределении вещества, которые существовали на ранней стадии эволюции Вселенной и послужили зародышами галактик и их скоплений.Однако точности данных COBE и «Реликта» было недостаточно для проверки космологических моделей, и поэтому в 2001 году был запущен новый более точный аппарат WMAP (Wilkinson Microwave Anisotropy Probe), который к 2003 году построил детальную карту распределения интенсивности реликтового излучения по небесной сфере. На основе этих данных сейчас ведется уточнение космологических моделей и представлений об эволюции галактик.
Спектр реликтового излучения

Спектр реликтового излучения

Реликтовое излучение возникло, когда возраст Вселенной составлял около 400 тысяч лет и она вследствие расширения и остывания стала прозрачна для собственного теплового излучения. Первоначально излучение имело планковский (чернотельный) спектр с температурой около 3000 K и приходилось на ближний инфракрасный и видимый диапазоны спектра.

По мере расширения Вселенной реликтовое излучение испытывало красное смещение, что приводило к снижению его температуры. На сегодня температура реликтового излучения составляет 2,7 К и оно приходится на микроволновый и дальний инфракрасный (субмиллиметровый) диапазоны спектра. На графике показан приближенный вид планковского спектра для этой температуры. Впервые спектр реликтового излучения был измерен спутником COBE (см. Небо в инфракрасном диапазоне), за что в 2006 году была присуждена Нобелевская премия.

Радионебо на волне 21 см, 1420 МГц (Dickey & Lockman)

Радионебо на волне 21 см, 1420 МГц (Dickey & Lockman)Знаменитая спектральная линия с длиной волны 21,1 см — это еще один способ наблюдения нейтрального атомарного водорода в космосе. Линия возникает благодаря так называемому сверхтонкому расщеплению основного энергетического уровня атома водорода.Энергия невозбужденного атома водорода зависит от взаимной ориентации спинов протона и электрона. Если они параллельны, энергия чуть выше. Такие атомы могут спонтанно переходить в состояние с антипараллельными спинами, испуская квант радиоизлучения, уносящий крохотный избыток энергии. С отдельным атомом такое случается в среднем раз в 11 млн лет. Но огромное распространение водорода во Вселенной делает возможным наблюдение газовых облаков на этой частоте.

Радионебо на волне 73,5 см, 408 МГц (Бонн)

Радионебо на волне 73,5 см, 408 МГц (Бонн)Это самый длинноволновый из всех обзоров неба. Он был выполнен на волне, на которой в Галактике наблюдается значительное число источников. Кроме того, выбор длины волны определялся техническими причинами. Для построения обзора использовался один из крупнейших в мире полноповоротных радиотелескопов — 100-метровый боннский радиотелескоп.

Земное применение

Микроволновая печь

Микроволновая печьГлавное преимущество микроволновой печи — прогрев со временем продуктов по всему объему, а не только с поверхности.Микроволновое излучение, имея большую длину волны, глубже инфракрасного проникает под поверхность продуктов. Внутри продуктов электромагнитные колебания возбуждают вращательные уровни молекул воды, движение которых в основном и вызывает нагрев пищи. Таким образом происходит микроволновая (СВЧ) сушка продуктов, размораживание, приготовление и разогрев. Также переменные электрические токи возбуждают токи высокой частоты. Эти токи могут возникать в веществах, где присутствуют подвижные заряженные частицы.А вот острые и тонкие металлические предметы в микроволновую печь помещать нельзя (это особенно касается посуды с напыленными металлическими украшениями под серебро и золото). Даже тонкое колечко позолоты по краю тарелки может вызвать мощный электрический разряд, который повредит устройство, создающее электромагнитную волну в печи (магнетрон, клистрон).

Сотовый телефон

Сотовый телефонПринцип действия сотовой телефонии основан на использовании радиоканала (в микроволновом диапазоне) для связи между абонентом и одной из базовых станций. Между базовыми станциями информация передается, как правило, по цифровым кабельным сетям.Радиус действия базовой станции — размер соты — от нескольких десятков до нескольких тысяч метров. Он зависит от ландшафта и от мощности сигнала, которую подбирают так, чтобы в одной соте было не слишком много активных абонентов.В стандарте GSM одна базовая станция может обеспечивать не более 8 телефонных разговоров одновременно. На массовых мероприятиях и при стихийных бедствиях количество звонящих абонентов резко увеличивается, это перегружает базовые станции и приводит к перебоям с сотовой связью. На такие случаи у сотовых операторов есть мобильные базовые станции, которые могут быть оперативно доставлены в район большого скопления народа.Много споров вызывает вопрос о возможном вреде микроволнового излучения сотовых телефонов. Во время разговора передатчик находится в непосредственной близости от головы человека. Многократно проводившиеся исследования пока не смогли достоверно зарегистрировать негативного воздействия радиоизлучения сотовых телефонов на здоровье. Хотя полностью исключить воздействие слабого микроволнового излучения на ткани организма нельзя, оснований для серьезного беспокойства нет.

Телевизор

ТелевизорПередача телевизионного изображения ведется на метровых и дециметровых волнах. Каждый кадр разбивается на строки, вдоль которых определенным образом меняется яркость.Передатчик телевизионной станции постоянно выдает в эфир радиосигнал строго фиксированной частоты, она называется несущей частотой. Под нее подстраивается приемный контур телевизора — в нем на нужной частоте возникает резонанс, позволяющий уловить слабые электромагнитные колебания. Информация об изображении передается амплитудой колебаний: большая амплитуда — высокая яркость, низкая амплитуда — темный участок изображения. Этот принцип называется амплитудной модуляцией. Аналогичным образом передается звук радиостанциями (кроме FM-станций).С переходом к цифровому телевидению правила кодирования изображения меняются, но сам принцип несущей частоты и ее модуляции сохраняется.

Спутниковая тарелка

Спутниковая тарелкаПараболическая антенна для приема сигнала с геостационарного спутника в микроволновом и УКВ-диапазонах. Принцип действия такой же, как у радиотелескопа, но тарелку не требуется делать подвижной. В момент монтажа ее направляют на спутник, который всегда остается на одном месте относительно земных сооружений.Это достигается за счет вывода спутника на геостационарную орбиту высотой около 36 тыс. км над экватором Земли. Период обращения по этой орбите в точности равен периоду вращения Земли вокруг своей оси относительно звезд — 23 часа 56 минут 4 секунды. Размер тарелки зависит от мощности спутникового передатчика и его диаграммы направленности. У каждого спутника есть основной район обслуживания, где его сигналы принимаются тарелкой диаметром 50–100 см, и периферийная зона, где сигнал быстро слабеет и для его приема может потребоваться антенна до 2–3 м.

За пределами электромагнитного спектра

Большую часть информации человек получает благодаря зрению, то есть улавливая электромагнитное излучение в узком диапазоне видимого света. То же самое можно сказать и об астрономах, только доступный им спектр порядков на 30 шире. Но электромагнитное излучение — не единственный канал получения информации.

Человек чувствует тепло близких нагретых предметов, а астрономы регистрируют нейтрино — едва уловимые частицы, которые в несметных количествах рождаются в недрах звезд, в том числе Солнца, и беспрепятственно выходят наружу.

Человек воспринимает запахи, переносимые летучими веществами. Аналог в астрономии — космические лучи — энергичные заряженные частицы, в основном протоны, которые разгоняются до огромных скоростей в разных космических катаклизмах, а потом долетают до Земли.

У человека есть осязание, и астрономы могут пощупать космическое вещество — упавшие на Землю метеориты, грунт соседних небесных тел, просто частицы пыли и газа, собранные в космосе.

А совсем скоро астрономия должна обрести аналог слуха — способность регистрировать гравитационные волны, колебания самого пространства, порождаемые резкими перемещениями огромных масс, например, нейтронных звезд и черных дыр.

Космический гравитационный телескоп LISA (проект)

Космический гравитационный телескоп LISA (проект)

Нейтринный телескоп (Садбери, Канада)

Нейтринный телескоп (Садбери, Канада)

Плакат ещё раз

Источник: «Элементы большой науки»

О тёмной материи

Людвиг Фейербах и конец классической немецкой философии

Другие записи из рубрики...

4 комментария

  1. Киушкин Евгений Иванович:

    Письмо в Конгресс и Сенат США.

    Уважаемые члены Конгресса и Сената США!
    Дорогие коллеги и партнёры!
    Друзья!

    Доколе?!
    Вы меня знаете по делам моим и поступкам в вопросах паритета, принуждения к миру, мирного сосуществования.
    Я, Гражданин Российской Федерации Киушкин Евгений Иванович, советский и российский изобретатель, создатель особого Электромагнитного Оружия Массового Поражения.
    Впервые активно на практике я стал волновать вас ещё в 70-х годах ХХ века. Вы в реальных событиях оценили и оцениваете по сей день мою эффективность. Вас трясёт и лихорадит с тех самых значимых для мирного мира пор, когда, открывая и воплощая фундаментальное и прикладное научное наследие в явные земные изобретения, к 1986 году я создал сверхновое направление, произвёл Государственные полигонные испытания в Демократической Республике Афганистан, в Республике Никарагуа, в Республике Куба, в Германской Демократической Республике в 1986, 1987, 1988 годах и поставил на вооружение секретную систему, обеспечив небывалую ранее Глобальную Государственную Безопасность.
    25 сентября 2014 года я единолично принял решение о развитии освобождения Космоса от засилья вашего Милитаризма. Отмечаю, что осознанное введение против Милитаристов САНКЦИЙ и запретов на возможность использования Милитаристами околоземного Космического пространства, как составной части НЕ милитаризированной жизни НЕ милитаризированной Вселенной — это не реванш, а необходимость защиты Земной цивилизации, Человеческого разума и Человеческой эволюции, необходимость сохранения мирного прогресса.
    Профессиональный военнослужащий, военный научный деятель, радикальный миротворец, в душе я убеждённый пацифист. Моя цель и цель моего детища — глобальное обеспечение мирной жизни. Миру — мир! Мир — миру!

    Честь имею.

    Ваш вероятный союзник Евгений Киушкин.

    Российская Федерация.
    25 сентября 2014 года.

  2. В онтологическом отношении электромагнитное излучение — и не частица, и не волна, а полевое образование. По той простой причине, что появляется в результате отрыва турбулентного слоя от полевого вихря при локальном возмущении. Именно с этой отправной точки и необходимо рассматривать фотон/квант/безмассовую частицу/цуг волн/э.м. волну, поскольку полевое образование имеет не только полевую структуру и динамику, но и взаимодействует с другими объектами, как с полевыми образованиями. В физике должен выполняться принцип: подобное взаимодействует с подобным, что значит: поле взаимодействует с полем.

    http://gravitus.ucoz.ru/news/chto_takoe_ehlektromagnitnoe_izluchenie_v_ontologicheskom_otnoshenii/2015-02-19-57

Добавить комментарий

Войти с помощью: 
Подробнее:
Рисунки художника the-black-cat

  Источник - http://the-black-cat.deviantart.com/gallery/?offset=0  

Закрыть